首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
浅析TSC无功补偿装置   总被引:1,自引:0,他引:1  
刘晖 《电力电容器》2007,28(3):13-15,39
晶闸管投切电容器(TSC)是静止无功补偿技术的发展方向。分析了TSC装置常用主电路的特点,介绍了电容器投切判据与信号检测、零电压投入以及晶闸管触发电路等关键问题的解决方案。  相似文献   

2.
TSC无功补偿装置的设计   总被引:16,自引:0,他引:16  
晶闸管投切电容器(TSC)是静止无功补偿技术的发展方向。根据笔者设计的一种TSC无功补偿装置,分析了TSC装置常用主电路的特点,介绍了电容器投切判据、信号检测、零电压投入以及晶闸管触发电路等关键问题的解决方案。  相似文献   

3.
采用固体继电器作TSC的投切开关   总被引:3,自引:1,他引:2  
在电力系统中,采用晶闸管投切电容器TSC(ThyristorSwitchedCapacitors)的动态无功补偿装置中,晶闸管对驱动信号要求严格,驱动电路相当复杂。介绍了TSC无功补偿的电路原理图和固体继电器SSR(SolidStateRelay)的组成原理图及SSR的主要特点。考虑到过零型SSR具有TSC投切电容器所具有的过零触发功能,提出将其作为TSC的投切开关,从而简化了TSC电路。  相似文献   

4.
TSC动态无功补偿技术述评   总被引:19,自引:0,他引:19  
何一浩  王树民 《中国电力》2004,37(10):22-26
介绍晶闸管投切电容器(TSC)的基本概况,阐述TSC主电路的4种接线方式,从系统变量的检测、控制目标的选取及脉冲的触发3个方面介绍TSC的控制系统,根据当前TSC还存在的一些问题,提出其应用前景。通过调研表明,随着电力电子技术及电力系统的迅速发展,晶闸管投切电容器技术值得进一步深入研究和大力推广应用。  相似文献   

5.
通过晶闸管投切电容器组的电路模型,运用拉氏变换分析了无过渡过程投切电容器的两个必要条件,以及满足该条件的主电路的结构和触发时应解决的问题;详细分析了预充电无过渡过程TSC主电路的工作原理;针对现有的触发电路调试复杂、运行易受环境影响的特点,以其工作波形为基础,以星形连接的晶闸管投切电容器组为例,阐述了预充电动态无过渡过程TSC触发电路的设计应注意的事项、实现的途径及原理框图,该电路通过了实验室验证,文章在最后得出了合理的结论。  相似文献   

6.
通过晶闸管投切电容器组的电路模型,运用拉氏变换分析了无过渡过程投切电容器的两个必要条件,以及满足该条件的主电路的结构和触发时应解决的问题;详细分析了预充电无过渡过程TSC主电路的工作原理;针对现有的触发电路调试复杂、运行易受环境影响的特点,以其工作波形为基础,以星形连接的晶闸管投切电容器组为例,阐述了预充电动态无过渡过程TSC触发电路的设计应注意的事项、实现的途径及原理框图,该电路通过了实验室验证,文章在最后得出了合理的结论。  相似文献   

7.
低压系统无功补偿多采用晶闸管投切电容器 (TSC),文章对 TSC装置的投切过程进行了分析,指出应采用晶闸管电压过零点与电源峰值点相结合的方式进行 TSC投入控制.对三相 TSC的电路进行了分析,提出了一种采用三晶闸管元件的简化 TSC方案,并给出了其触发控制方法.该方案接线简单,控制方便,可适用对称补偿的应用场所。  相似文献   

8.
基于电压过零投入、电流过零退出的二控三型晶闸管投切电容器(TSC)在重复投切过程中易发生晶闸管闭锁现象,通过建立TSC主电路的理想模型,详细分析了晶闸管闭锁现象的产生原因。结合实际可行性,提出了防闭锁控制方法。最后,综合主电路串联电抗器和电容器放电电阻的影响,对所提控制方法进行了仿真和实验验证。结果表明所提控制方法能有效避免晶闸管闭锁现象的发生,对提高二控三型TSC动态响应性能具有重要意义。  相似文献   

9.
李涛 《电气时代》2008,(7):96-96,98
TSC(Thyristor Switched Capacitor)是基于晶闸管开关投切电容器的配电系统补偿设备,它的主要特征就是无暂态地补偿变化负载的无功需求且并不向系统注入谐波。国内一直称之为晶闸管投切电容器(TSC)。  相似文献   

10.
光伏电厂需要配置一定的无功补偿装置,并联电容器是一种主要的无功补偿方式。笔者提出一种节能型晶闸管投切电容器TSC,能够有效降低机械开关投切电容器引发的电能质量问题,并且有效克服了常规高压TSC可靠性不够高、损耗较大的缺点。该节能型TSC的关键在于投切开关,三相中的任意2相采用晶闸管和交流接触器相互并联组成复合开关,剩余1相采用交流接触器作为投切开关。在工作过程中,节能型TSC的晶闸管阀仅在投入和切除过程中流过交流电流,晶闸管阀的有功损耗显著降低,可无需散热装置。通过在PSCAD/EMTDC平台上的数字仿真证明该节能型TSC是完全可行的。  相似文献   

11.
为了解决晶闸管投切电容器成本高,导通损耗大等问题,笔者结合无触点开关和交流接触器各自的优点,设计了一种由单片机80C196KC控制的复合型晶闸管投切电容器装置,并且分析了晶闸管投切电容器装置常用主电路的特点,介绍了该装置主电路的结构特点、信号检测、晶闸管电压过零检测、触发电路以及电容器投切时刻的选择等关键问题的解决方案。  相似文献   

12.
为实现低压配电网低成本大容量动态连续无功补偿,提出了一种晶闸管投切电容器(TSC)与静止无功发生器(SVG)协同运行的混合无功补偿系统。系统综合了TSC低成本大容量的无功补偿和SVG动态连续无功补偿的优点。在分析其基本原理的基础上,提出混合无功补偿系统分层协调控制策略,消除TSC与SVG由于响应速度的差别对其混合无功补偿性能的影响。针对混合无功补偿系统在电网电压不平衡条件下的安全运行问题,研究了SVG的正负序双环叠加控制策略,使其在具有动态无功补偿性能的同时能抑制一定程度的不平衡电压,保证系统的安全稳定运行。最后,仿真验证了所提控制策略的正确性。  相似文献   

13.
TSC装置合闸过电压及其抑制措施   总被引:1,自引:0,他引:1  
首先分析了常用的几种晶闸管投切电容器装置(TSC)的主电路,以晶闸管与二极管反并联构成的TSC无触点开关为例,分析了TSC装置合闸过程中,晶闸管阀端可能承受的过电压,并提出了采用并联MOA抑制过电压的方案。以一组工程应用的10 kV TSC装置为例,采用matlab/simulink对装置采用MOA前后的过电压水平进行了仿真分析,结果表明,采用阀端安装MOA抑制过电压的方案是可行的。  相似文献   

14.
晶闸管投切电容无功补偿角型接线方案的研究   总被引:3,自引:0,他引:3  
对于三相平衡负载的无功补偿 ,提出了晶闸管投切电容无功补偿角型接线的两种新的经济型方案。第一种采用晶闸管的反并联 ,第二种利用晶闸管和二极管的反并联。相对于常规的接线方案 ,新方案则要显得更加经济且能够快速地控制电容器组的投入和切除。  相似文献   

15.
晶闸管投切电容器技术的进展   总被引:12,自引:0,他引:12  
介绍了用于配电系统动态无功补偿的晶闸管投切电容器(TSC)的基本原理、分类、主电路形式、控制物理量的检测、控制策略及最新的研究进展等。  相似文献   

16.
提出一种低成本混合型无功补偿系统(hybrid var compensator,HVC),它由一台较小容量的静止无功发生器(static synchronous compensator,STATCOM)和较大容量的多组晶闸管投切电容器(thyristor switched capacitor,TSC)构成,其中STATCOM用以实现快速连续无功调节,TSC实现无功的大容量分级调节,二者协同工作使HVC系统兼具STATCOM快速连续无功补偿及TSC低成本大容量无功补偿的优势,实现低成本大容量的无功连续补偿。在分析HVC基本工作原理的基础上,提出基于专家决策的HVC协调控制方法,实现离散子系统TSC和连续子系统STATCOM的协调控制,确保HVC能进行快速大容量的无功补偿,针对传统的STATCOM串级电压控制器中调节器多、控制器参数难以设计的缺点,提出基于瞬时功率平衡的电压控制策略,以降低STATCOM控制复杂度,提高可靠性,使系统更易于实现。仿真及现场应用结果证明HVC能够实现无级连续无功补偿,并且成本低,在满足高电耗企业节能降耗需求的基础上,为应用单位减少了投资。  相似文献   

17.
一种TSC型SVC中晶闸管高频送能系统的研究   总被引:1,自引:0,他引:1  
介绍一种静止无功补偿装置(SVC)中晶闸管投切电容器(TSC)的原理和快速过零触发要求,证明了TSC 的晶闸管触发电路采用高频送能的原因,分析了高频送能系统的构成及工作原理.验证了高频送能系统用于晶闸管触发的可靠性,取得了良好的效果,并为TSC的工程应用莫定了坚实基础.  相似文献   

18.
依照TSC投切机理,开发了两种工作可靠、使用元件少、成本低的TSC投切开关的新型主回路结构,简称为“2+1”电路和“2+2”电路。满足了TSC投切机理,投入瞬时,电流无冲击,平稳过渡。不仅介绍了“2+1”电路和“2+2”电路工作机理,晶闸管触发原理,投切过渡过程电流、电压情况等,还简单介绍针对上述两种主电路所开发的触发控制电路。  相似文献   

19.
TSC高压晶闸管阀过电流失效机理   总被引:3,自引:1,他引:2  
为满足晶闸管投切电容器(TSC)装置可靠性及其试验方法和试验等效机理研究的需要,重点研究了TSC装置的核心部件--高压晶闸管阀在过电流故障状态下的失效机理.首先介绍了TSC系统及其阀的结构以及过电流故障形成的原因和特征,并给出了过电流的数学方程和仿真波形.然后按照过电流故障的不同发展阶段对TSC阀的电流、电压和热等应力进行了解析分析.在上述基础上,结合器件的物理特性,对TSC阀各个元件在各种故障应力下的内部物理过程进行了分析.最终得到了TSC阀在过电流故障的不同发展阶段的失效模式和失效指标,从而揭示了TSC高压晶闸管阀的过电流失效机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号