首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multiple versions of the DEBS 1-TE gene, which encodes a truncated bimodular polyketide synthase (PKS) derived from the erythromycin-producing PKS, were created by replacing the DNA encoding the ketoreductase (KR) domain in the second extension module by either of two synthetic oligonucleotide linkers. This made available a total of nine unique restriction sites for engineering. The DNA for donor "reductive loops," which are sets of contiguous domains comprising either KR or KR and dehydratase (DH), or KR, DH and enoylreductase (ER) domains, was cloned from selected modules of five natural PKS multienzymes and spliced into module 2 of DEBS 1-TE using alternative polylinker sites. The resulting hybrid PKSs were tested for triketide production in vivo. Most of the hybrid multienzymes were active, vindicating the treatment of the reductive loop as a single structural unit, but yields were dependent on the restriction sites used. Further, different donor reductive loops worked optimally with different splice sites. For those reductive loops comprising DH, ER and KR domains, premature TE-catalysed release of partially reduced intermediates was sometimes seen, which provided further insight into the overall stereochemistry of reduction in those modules. Analysis of loops containing KR only, which should generate stereocentres at both C-2 and C-3, revealed that the 3-hydroxy configuration (but not the 2-methyl configuration) could be altered by appropriate choice of a donor loop. The successful swapping of reductive loops provides an interesting parallel to a recently suggested pathway for the natural evolution of modular PKSs by recombination.  相似文献   

3.
4.
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins (CPs) from fatty acid synthases (FASs) (primary metabolism), polyketide synthases (PKSs), and non-ribosomal polypeptide synthetases (NRPSs) (secondary metabolism). Bacteria typically harbor one PPTase specific for CPs of primary metabolism ("ACPS-type" PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism ("Sfp-type" PPTases). In order to identify the PPTase(s) associated with erythromycin biosynthesis in Saccharopolyspora erythraea, we have used the genome sequence of this organism to identify, clone, and express (in Escherichia coli) three candidate PPTases: an ACPS-type PPTase (S. erythraea ACPS) and two Sfp-type PPTases (a discrete enzyme (SePptII) and another that is integrated into a modular PKS subunit (SePptI)). In vitro analysis of these recombinant PPTases, with an acyl carrier protein-thioesterase (ACP-TE) didomain from the erythromycin PKS as substrate, revealed that only SePptII is active in phosphopantetheinyl transfer with this substrate. SePptII was also shown to provide complete modification of ACP-TE and of an entire multienzyme subunit from the erythromycin PKS in E. coli. The efficiency of the SePptII in phosphopantetheinyl transfer in E. coli makes it an attractive alternative to other Sfp-type PPTases for co-expression experiments with PKS proteins.  相似文献   

5.
Polyketide natural products such as erythromycin A and epothilone are assembled on multienzyme polyketide synthases (PKSs), which consist of modular sets of protein domains. Within these type I systems, the fidelity of biosynthesis depends on the programmed interaction among the multiple domains within each module, centered around the acyl carrier protein (ACP). A detailed understanding of interdomain communication will therefore be vital for attempts to reprogram these pathways by genetic engineering. We report here that the interaction between a representative ACP domain and its downstream thioesterase (TE) is mediated largely by covalent tethering through a short "linker" region, with only a minor energetic contribution from protein-protein molecular recognition. This finding helps explain in part the empirical observation that TE domains can function out of their normal context in engineered assembly lines, and supports the view that overall PKS architecture may dictate at least a subset of interdomain interactions.  相似文献   

6.
7.
Type II polyketide synthases are involved in the biosynthesis of numerous clinically relevant secondary metabolites with potent antibiotic or anticancer activity. Until recently the only known producers of type II PKSs were members of the Gram-positive actimomycetes, well-known producers of secondary metabolites in general. Here we present the second example of a type II PKS from Gram-negative bacteria. We have identified the biosynthesis gene cluster responsible for the production of anthraquinones (AQs) from the entomopathogenic bacterium Photorhabdus luminescens. This is the first example of AQ production in Gram-negative bacteria, and their heptaketide origin was confirmed by feeding experiments. Deletion of a cyclase/aromatase involved in AQ biosynthesis resulted in accumulation of mutactin and dehydromutactin, which have been described as shunt products of typical octaketide compounds from streptomycetes, and a pathway for AQ formation from octaketide intermediates is discussed.  相似文献   

8.
9.
The pathway for substrate transacylation between a fungal type I fatty acid synthase (FAS) and a nonreducing polyketide synthase (NR-PKS) was determined by in vitro reconstitution of dissected domains. System kinetics were influenced by domain dissections, and the FAS phosphopantetheinyl transferase (PPT) monodomain exhibited coenzyme A selectivity for the post-translational activation of the FAS acyl carrier protein (ACP).  相似文献   

10.
11.
Polyether ionophores, such as monensin A, are known to be biosynthesised, like many other antibiotic polyketides, on giant modular polyketide synthases (PKSs), but the intermediates and enzymes involved in the subsequent steps of oxidative cyclisation remain undefined. In particular there has been no agreement on the mechanism and timing of the final polyketide chain release. We now report evidence that MonCII from the monensin biosynthetic gene cluster in Streptomyces cinnamonensis, which was previously thought to be an epoxide hydrolase, is a novel thioesterase that belongs to the alpha/beta-hydrolase structural family and might catalyse this step. Purified recombinant MonCII was found to hydrolyse several thioester substrates, including an N-acetylcysteamine thioester derivative of monensin A. Further, incubation with a hallmark inhibitor of such enzymes, phenylmethanesulfonyl fluoride, led to inhibition of the thioesterase activity and to the accumulation of an acylated form of MonCII. These findings require a reassessment of the role of other enzymes implicated in the late stages of polyether ionophore biosynthesis.  相似文献   

12.
The actinorhodin (act) synthase acyl carrier protein (ACP) from Streptomyces coelicolor plays a central role in polyketide biosynthesis. Polyketide intermediates are bound to the free sulfhydryl group of a phosphopantetheine arm that is covalently linked to a conserved serine residue in the holo form of the ACP. The solution NMR structures of both the apo and holo forms of the ACP are reported, which represents the first high resolution comparison of these two forms of an ACP. Ensembles of twenty apo and holo structures were calculated and yielded atomic root mean square deviations of well-ordered backbone atoms to the average coordinates of 0.37 and 0.42 A, respectively. Three restraints defining the protein to the phosphopantetheine interface were identified. Comparison of the apo and holo forms revealed previously undetected conformational changes. Helix III moved towards helix II (contraction of the ACP), and Leu43 on helix II subtly switched from being solvent exposed to forming intramolecular interactions with the newly added phosphopantetheine side chain. Tryptophan fluorescence and S. coelicolor fatty acid synthase (FAS) holo-synthase (ACPS) assays indicated that apo-ACP has a twofold higher affinity (K(d) of 1.1 muM) than holo-ACP (K(d) of 2.1 muM) for ACPS. Site-directed mutagenesis of Leu43 and Asp62 revealed that both mutations affect binding, but have differential affects on modification by ACPS. Leu43 mutations in particular strongly modulate binding affinity for ACPS. Comparison of apo- and holo-ACP structures with known models of the Bacillus subtilis FAS ACP-holo-acyl carrier protein synthase (ACPS) complex suggests that conformational modulation of helix II and III between apo- and holo-ACP could play a role in dissociation of the ACP-ACPS complex.  相似文献   

13.
14.
15.
16.
17.
The biosynthetic pathway to the unusual tetronate ring of certain polyketide natural products, including the antibiotics abyssomicin and tetronomycin (TMN) and the antitumour compound chlorothricin (CHL), is presently unknown. The gene clusters governing chlorothricin and tetronomycin biosynthesis both contain a gene encoding an atypical member of the FkbH family of enzymes, which has previously been shown to synthesise glyceryl-S-acyl carrier protein (ACP) as the first step in production of unusual extender units for modular polyketide biosynthesis. We show here that purified recombinant FkbH-like protein, Tmn16, from the TMN gene cluster catalyses the efficient transfer of a glyceryl moiety from D-1,3-bisphosphoglycerate (1,3-BPG) to either of the dedicated ACPs, Tmn7a and ChlD2, to form glyceryl-S-ACP, which directly implicates this compound as an intermediate in tetronate biosynthesis as well. Neither Tmn16 nor Tmn7a produced glyceryl-S-ACP when incubated, respectively, with analogous ACP and FkbH-like proteins from a known extender-unit pathway; this indicates a highly selective channelling of glycolytic metabolites into tetronate biosynthesis.  相似文献   

18.
19.
Myxococcus xanthus DK1622 is shown to be a producer of myxovirescin (antibiotic TA) antibiotics. The myxovirescin biosynthetic gene cluster spans at least 21 open reading frames (ORFs) and covers a chromosomal region of approximately 83 kb. In silico analysis of myxovirescin ORFs in conjunction with genetic studies suggests the involvement of four type I polyketide synthases (PKSs; TaI, TaL, TaO, and TaP), one major hybrid PKS/NRPS (Ta-1), and a number of monofunctional enzymes similar to the ones involved in type II fatty-acid biosynthesis (FAB). Whereas deletion of either taI or taL causes a dramatic drop in myxovirescin production, deletion of both genes (DeltataIL) leads to the complete loss of myxovirescin production. These results suggest that both TaI and TaL PKSs might act in conjunction with a methyltransferase, reductases, and a monooxygenase to produce the 2-hydroxyvaleryl-S-ACP starter that is proposed to act as the biosynthetic primer in the initial condensation reaction with glycine. Polymerization of the remaining 11 acetates required for lactone formation is directed by 12 modules of Ta-1, TaO, and TaP megasynthetases. All modules, except for the first module of TaL, lack cognate acyltransferase (AT) domains. Furthermore, deletion of a discrete tandem AT-encoded by taV-blocks myxovirescin production; this suggests an "in trans" mode of action. To embellish the macrocycle with methyl and ethyl moieties, assembly of the myxovirescin scaffold is proposed to switch twice from PKS to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)-like biochemistry during biosynthesis. Disruption of the S-adenosylmethionine (SAM)-dependent methyltransferase, TaQ, shifts production toward two novel myxovirescin analogues, designated myxovirescin Q(a) and myxovirescin Q(c). NMR analysis of purified myxovirescin Q(a) revealed the loss of the methoxy carbon atom. This novel analogue lacks bioactivity against E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号