首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. This complex consists of receptor components for the initial contact with preproteins at the mitochondrial surface and membrane-embedded proteins which promote transport and form the translocation pore. In order to understand the interplay between the translocating preprotein and the constituents of the TOM complex, we analyzed the dynamics of the TOM complex of Neurospora crassa and Saccharomyces cerevisiae mitochondria by following the structural alterations of the essential pore component Tom40 during the translocation of preproteins. Tom40 exists in a homo-oligomeric assembly and dynamically interacts with Tom6. The Tom40 assembly is influenced by a block of negatively charged amino acid residues in the cytosolic domain of Tom22, indicating a cross-talk between preprotein receptors and the translocation pore. Preprotein binding to specific sites on either side of the outer membrane (cis and trans sites) induces distinct structural alterations of Tom40. To a large extent, these changes are mediated by interaction with the mitochondrial targeting sequence. We propose that such targeting sequence-induced adaptations are a critical feature of translocases in order to facilitate the movement of preproteins across cellular membranes.  相似文献   

2.
The ADP/ATP carrier (AAC) of the mitochondrial inner membrane is synthesized in the cytosol without a cleavable presequence. The preprotein preferentially binds to the mitochondrial surface receptor Tom70 and joins the import pathway of presequence-carrying preproteins at the cis side of the outer membrane. Little is known about the translocation of the AAC across the outer membrane and where its import route separates from that of cleavable preproteins. Here we have characterized a translocation intermediate of AAC during transfer across the outer membrane. The major portion of the preprotein is exposed to the intermembrane space, while a short segment is still accessible to externally added protease. This intermediate can be quantitatively chased to the fully imported form in the inner membrane. Its accumulation depends on Tom7, but not on the intermembrane space domain of Tom22 in contrast to cleavable preproteins. Moreover, opening of the intermembrane space inhibits the import of AAC, but not that of cleavable preproteins into mitoplasts. We conclude that the import route of AAC diverges from the general import pathway of cleavable preproteins already at the trans side of the outer membrane.  相似文献   

3.
The preprotein translocase of the outer mitochondrial membrane (Tom) is a multisubunit machinery containing receptors and a general import pore (GIP). We have analyzed the molecular architecture of the Tom machinery. The receptor Tom22 stably associates with Tom40, the main component of the GIP, in a complex with a molecular weight of approximately 400,000 ( approximately 400K), while the other receptors, Tom20 and Tom70, are more loosely associated with this GIP complex and can be found in distinct subcomplexes. A yeast mutant lacking both Tom20 and Tom70 can still form the GIP complex when sufficient amounts of Tom22 are synthesized. Besides the essential proteins Tom22 and Tom40, the GIP complex contains three small subunits, Tom5, Tom6, and Tom7. In mutant mitochondria lacking Tom6, the interaction between Tom22 and Tom40 is destabilized, leading to the dissociation of Tom22 and the generation of a subcomplex of approximately 100K containing Tom40, Tom7, and Tom5. Tom6 is required to promote but not to maintain a stable association between Tom22 and Tom40. The following conclusions are suggested. (i) The GIP complex, containing Tom40, Tom22, and three small Tom proteins, forms the central unit of the outer membrane import machinery. (ii) Tom20 and Tom70 are not essential for the generation of the GIP complex. (iii) Tom6 functions as an assembly factor for Tom22, promoting its stable association with Tom40.  相似文献   

4.
We analysed the import pathway of Tim23 and of Tim17, components of the mitochondrial import machinery for matrix-targeted preproteins. Tim23 contains two independent import signals. One is located within the first 62 amino acid residues of the hydrophilic domain that, in the assembled protein, is exposed to the intermembrane space. This signal mediates translocation of Tim23 across the outer membrane independently of the membrane potential, DeltaPsi. A second import signal is located in the C-terminal membrane-integrated portion of Tim23. It mediates translocation across the outer membrane and insertion into the inner membrane in a strictly DeltaPsi-dependent fashion. Structurally, Tim17 is related to Tim23 but lacks a hydrophilic domain. It contains an import signal in the C-terminal half and its import requires DeltaPsi. The DeltaPsi-dependent import signals of Tim23 and Tim17 are located at corresponding sites in these two homologous proteins. They exhibit features reminiscent of the positively charged N-terminal presequences of matrix-targeted precursors. Import of Tim23 and its insertion into the inner membrane requires Tim22 but not functional Tim23. Thus, biogenesis of the Tim23.17 complex depends on the Tim22 complex, which is the translocase identified as mediating the import of carrier proteins.  相似文献   

5.
Growing mitochondria acquire most of their proteins by the uptake of mitochondrial preproteins from the cytosol. To mediate this protein import, both mitochondrial membranes contain independent protein transport systems: the Tom machinery in the outer membrane and the Tim machinery in the inner membrane. Transport of proteins across the inner membrane and sorting to the different inner mitochondrial compartments is mediated by several protein complexes which have been identified in the past years. A complex containing the integral membrane proteins Tim17 and Tim23 constitutes the import channel for preproteins containing amino-terminal hydrophilic presequences. This complex is associated with Tim44 which serves as an adaptor protein for the binding of mtHsp70 to the membrane. mtHsp70, a 70 kDa heat shock protein of the mitochondrial matrix, drives the ATP-dependent import reaction of the processed preprotein after cleavage of the presequence. Preproteins containing internal targeting information are imported by a separate import machinery, which consists of the intermembrane-space proteins Tim9, Tim10, and Tim12, and the inner membrane proteins Tim22 and Tim54. The proteins Tim17, Tim22, and Tim23 have in common a similar topology in the membrane and a homologous amino acid sequence. Moreover, they show a sequence similarity to OEP16, a channel-forming amino acid transporter in the outer envelope of chloroplasts, and to LivH, a component of a prokaryotic amino acid permease, defining a new PRAT-family of preprotein and amino acid transporters.  相似文献   

6.
TOM22 is an integral component of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The protein is anchored to the lipid bilayer by a central trans-membrane segment, thereby exposing the amino-terminal domain to the cytosol and the carboxyl-terminal portion to the intermembrane space. Here, we describe the sequence requirements for the targeting and correct insertion of Neurospora TOM22 into the outer membrane. The orientation of the protein is not influenced by the charges flanking its trans-membrane segment, in contrast to observations regarding proteins of other membranes. In vitro import studies utilizing TOM22 preproteins harboring deletions or mutations in the cytosolic domain revealed that the combination of the trans-membrane segment and intermembrane space domain of TOM22 is not sufficient to direct import into the outer membrane. In contrast, a short segment of the cytosolic domain was found to be essential for the import and assembly of TOM22. This sequence, a novel internal import signal for the outer membrane, carries a net positive charge. A mutant TOM22 in which the charge of the import signal was altered to -1 was imported less efficiently than the wild-type protein. Our data indicate that TOM22 contains physically separate import and membrane anchor sequences.  相似文献   

7.
Preprotein import into mitochondria is mediated by translocases located in the outer and inner membranes (Tom and Tim) and a matrix Hsp70-Tim44 driving system. By blue native electrophoresis, we identify an approximately 90K complex with assembled Tim23 and Tim17 as the core of the inner membrane import site for presequence-containing preproteins. Preproteins spanning the two membranes link virtually all Tim core complexes with one in four Tom complexes in a stable 600K supercomplex. Neither mtHsp70 nor Tim44 are present in stoichiometric amounts in the 600K complex. Preproteins in transit stabilize the Tim core complex, preventing an exchange of subunits. Our studies define a central role for the Tim core complexes in mitochondrial protein import; they are not passive diffusion channels, but can stably interact with preproteins and determine the number of translocation contact sites. We propose the hypothesis that mtHsp70 functions in protein import not only by direct interaction with preproteins, but also by exerting a regulatory effect on the Tim channel.  相似文献   

8.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

9.
The amino-terminal transit sequences of two preproteins destined for the chloroplast inner envelope membrane show similarities to mitochondrial presequences in the prevalence of positive charges and the potential formation of an amphipathic alpha-helix. We studied if these preproteins could be imported into mitochondria and found a low, yet significant import into isolated plant mitochondria. The plant mitochondria were previously shown not to import precursors of chloroplast stromal or thylakoidal proteins. To analyze the specificity of import into mitochondria we used the established import systems of fungal mitochondria. The envelope preproteins were efficiently imported into Saccharomyces cerevisiae or Neurospora crassa mitochondria. Their import showed the characteristics of specific mitochondrial protein uptake, including a requirement for the main receptor MOM19 (mitochondrial outer membrane protein of 19 kDa) and a membrane potential across the inner membrane, and depended on the presence of the chloroplast transit sequence. We conclude that some chloroplast transit sequences contain sufficient information for specific interaction with mitochondrial import receptors (at least from fungal sources).  相似文献   

10.
The signals for targeting and assembly of porin, a protein of the mitochondrial outer membrane, have not been clearly defined. Targeting information has been hypothesized to be contained in the N-terminus, which may form an amphipathic alpha-helix, and in the C-terminal portion of the protein. Here, the role of the extreme N- and C-termini of porin from Neurospora crassa in its import into the mitochondrial outer membrane was investigated. Deletion mutants were constructed which lacked the N-terminal 12 or 20 residues or the C-terminal 15 residues. The porins truncated at their N-termini were imported in a receptor-dependent manner into the outer membrane of isolated mitochondria. When integrated into the outer membrane, these preproteins displayed an increased sensitivity to protease as compared to wild-type porin. In contrast, mutant porin truncated at its C-terminus did not acquire protease resistance upon incubation with mitochondria. Thus, unlike most other mitochondrial preproteins, porin appears to contain important targeting and/or assembly information at its C-terminus, rather than at the N-terminus.  相似文献   

11.
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677-1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.  相似文献   

12.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   

13.
We have identified the protein import receptor MOM19 of Saccharomyces cerevisiae mitochondria. MOM19 is exposed on the outer membrane surface and present in the mitochondrial receptor complex. Antibodies raised against MOM19 strongly inhibited the import of preproteins into isolated yeast mitochondria. Fab fragments prepared from the antibodies showed the same inhibitory effect. By using mutant mitochondria, which lacked the second import receptor MOM72, we found that the import of preproteins via MOM19 did not require the presence of MOM72. We conclude that MOM19 is required for preprotein translocation across the yeast mitochondrial outer membrane and is able to function independently of the receptor MOM72.  相似文献   

14.
The requirement of mitochondrial hsp70 (mt-hsp70) for the import of a series of preproteins containing hydrophobic sorting signals into isolated yeast mitochondria was investigated. Here we demonstrate that the presence of such a sorting signal in proximity to the N-terminal matrix-targeting sequence of a preprotein can secure a translocating polypeptide chain in the import channel in a manner that does not require mt-hsp70 activity. Trapping the translocating chain in this fashion leads to efficient processing by the mitochondrial processing peptidase and to complete translocation across the outer mitochondrial membrane into the intermembrane space. These mt-hsp70-independent effects appear to be exerted at the level of the inner membrane through an interaction of the hydrophobic core of the sorting signal with component(s) of the translocase of the inner membrane. Hydrophobic sorting signals of inner membrane proteins inserted into the membrane from the matrix, as well as those of intermembrane space proteins, are capable of causing this mt-hsp70-independent stabilization, demonstrating that this phenomenon is not unique to those preproteins normally sorted to the intermembrane space.  相似文献   

15.
We have identified Tim9, a new component of the TIM22.54 import machinery, which mediates transport of proteins into the inner membrane of mitochondria. Tim9, an essential protein of Saccharomyces cerevisiae, shares sequence similarity with Tim10 and Tim12. Tim9 is located in the mitochondrial intermembrane space and is organized into two distinct hetero-oligomeric assemblies with Tim10 and Tim12. One complex contains Tim9 and Tim10. The other complex contains Tim9, Tim10 and Tim12 and is tightly associated with Tim22 in the inner membrane. The TIM9.10 complex is more abundant than the TIM9.10.12 complex and mediates partial translocation of mitochondrial carriers proteins across the outer membrane. The TIM9.10.12 complex assists further translocation into the inner membrane in association with TIM22.54.  相似文献   

16.
MOM22 is a component of the protein import complex of the mitochondrial outer membrane of Neurospora crassa. Using the newly developed procedure of 'sheltered disruption', we created a heterokaryotic strain harboring two nuclei, one with a null allele of the mom-22 gene and the other with a wild-type allele. Homokaryons bearing the mom-22 disruption could not be isolated, suggesting that mom-22 is an essential gene. The mutant nucleus can be forced to predominate in the heterokaryon through the use of specific nutritional and inhibitor resistance markers. Cultivation of the heterokaryon under conditions favoring the mutant nucleus resulted in selective depletion of MOM22. MOM22-depleted cells did not grow and contained mitochondria with an altered morphology and protein composition. Protein import into isolated, MOM22-depleted mitochondria was abolished for most precursor proteins destined for all subcompartments. In contrast, precursors of MOM19, MOM22 and MOM72 became inserted normally into the outer membrane, defining a novel MOM22-independent import pathway which remained intact in mutant mitochondria. Furthermore, the specific binding of the ADP/ATP carrier to the outer membrane was unaffected, but subsequent transport across the outer membrane did not occur. Our data show that MOM22 is an essential component of Neurospora cells specifically required for the biogenesis of mitochondria.  相似文献   

17.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. Our previous studies led to the concept of two preprotein binding sites acting in series, the surface-exposed cis site and the trans site exposed to the intermembrane space. We report here that preproteins are bound to the cis site in a labile fashion even at low ionic strength, whereas intermediates arrested at the trans site remained firmly bound at higher salt concentration. The stability of the trans site intermediate results from interactions of both the presequence and unfolded parts of the mature part of the preprotein with the TOM complex. Binding to the trans site proceeded at rates comparable with those of unfolding of the mature domain and appeared to be kinetically limited by the unfolding reaction. Efficient binding to the trans site and unfolding were observed with both outer membrane vesicles and intact mitochondria whose membrane potential, DeltaPsi, was dissipated. Upon re-establishing DeltaPsi, trans site-bound preprotein resumed translocation into the matrix. The rates of unfolding and binding to the trans site were the same as those for translocation into intact energized mitochondria. We conclude that preprotein unfolding in intact mitochondria can take place without the involvement of the translocation machinery of the inner membrane and, in particular, the matrix Hsp70 chaperone. Further, preprotein unfolding at the outer membrane can be a rate-limiting step for formation of the trans site intermediate and for the entire translocation reaction.  相似文献   

18.
Mitochondrial biogenesis requires translocation of numerous preproteins across both outer and inner membranes into the matrix of the organelle. This translocation process requires a membrane potential (DeltaPsi) and ATP. We have recently demonstrated that the efficient import of a urea-denatured preprotein into the matrix requires GTP hydrolysis (Sepuri, N. B. V., Schülke, N., and Pain, D. (1998) J. Biol. Chem. 273, 1420-1424). We now demonstrate that GTP is generally required for efficient import of various preproteins, both native and urea-denatured. The GTP participation is localized to a particular stage in the protein import process. In the presence of DeltaPsi but no added nucleoside triphosphates, the transmembrane movement of preproteins proceeds only to a point early in their translocation across the inner membrane. The completion of translocation into the matrix is independent of DeltaPsi but is dependent on a GTP-mediated "push." This push is likely mediated by a membrane-bound GTPase on the cis side of the inner membrane. This conclusion is based on two observations: (i) GTP does not readily cross the inner membrane barrier and hence, primarily acts outside the inner membrane to stimulate import, and (ii) the GTP-dependent stage of import does not require soluble constituents of the intermembrane space and can be observed in isolated mitoplasts. Efficient import into the matrix, however, is achieved only through the coordinated action of a cis GTP-dependent push and a trans ATP-dependent "pull."  相似文献   

19.
Most mitochondrial proteins are nuclear encoded, synthesized on cytosolic ribosomes, and imported into the mitochondria. We have identified and characterized a 309 amino acid human protein with a molecular weight of 34 kDa that functions as a subunit of the translocase for the import of such proteins. hTom34 (34-kDa Translocase of the Outer Mitochondrial Membrane) is displayed on the surface of mitochondria and is resistant to extraction under alkaline conditions. Antibodies raised against hTom34 specifically inhibit in vitro import of the mitochondrial precursor protein preornithine transcarbamylase into mitochondria isolated from rat liver. Based on trypsin digestion experiments, the receptor has a large (27 kDa) C-terminal domain exposed to the cytosol. This novel component of the protein import machinery possesses a 62 residue motif conserved with the Tom70 family of mitochondrial receptors but otherwise appears to have no counterpart so far characterized in the mitochondria of any other species.  相似文献   

20.
The mitochondrial import receptor translocase of the outer membrane of mitochondria (Tom20) consists of five segments, an N-terminal membrane-anchor segment, a linker segment rich in charged amino acids, a tetratricopeptide repeat motif, a glutamine-rich segment, and a C-terminal segment. To assess the role of each segment, four C-terminally truncated mutants of the human receptor (hTom20) were constructed, and the effect of their overexpression in COS-7 cells was analyzed. Expression of a mutant lacking the tetratricopeptide repeat motif inhibited preornithine transcarbamylase (pOTC) import to the same extent as the wild-type receptor. Thus, overexpression of the membrane-anchor and the linker segments is sufficient for the inhibition of import. Expression of either the wild-type receptor or a mutant lacking the C-terminal end of 20 amino acid residues stimulated import of pOTC-green fluorescent protein (GFP), a fusion protein in which the presequene of pOTC was fused to green fluorescent protein. On the other hand, expression of mutants lacking either the glutamine-rich segment or larger deletions inhibited pOTC-GFP import. In vitro import of pOTC was inhibited by the wild-type hTom20 and the mutant lacking the C-terminal end, but much less strongly by the mutant lacking the glutamine-rich segment. On the other hand, import of pOTC-GFP was little affected by any of the forms of hTom20. In binding assays, pOTC binding to hTom20 was only moderately decreased by the deletion of the glutamine-rich segment, whereas pOTC-GFP binding was completely lost by this deletion. Binding of pOTCN-GFP a construct that contains an additional 58 N-terminal residues of mature OTC, resembled that of pOTC. All of these results indicate that the region 106-125 containing the glutamine-rich segment of hTom20 is essential for binding and import stimulation in vivo of pOTC-GFP and for inhibition of in vitro import of pOTC. The results also indicate that this region is important for mitochondrial aggregation. The different behaviors of pOTC and the pOTC-GFP chimera toward hTom20 mutants is explicable on the basis of the conformation of the precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号