首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We report on the effect of high-methoxy pectin on the stability and rheological properties of fine sunflower oil-in-water emulsions prepared with αs1-casein, β-casein or sodium caseinate. The aqueous phase was buffered at pH 7.0 or 5.5 and the ionic strength was adjusted with sodium chloride in the range 0.01–0.2 M. Average emulsion droplet sizes were found to be slightly larger at the lower pH and/or with pectin present during emulsification. Analysis of the serum phase after centrifugation indicated that some pectin becomes incorporated into the interfacial layer at pH 5.5 but not at pH 7.0. This was also supported by electrophoretic mobility measurements on protein-coated emulsion droplets and surface shear viscometry of adsorbed layers at the planar oil–water interface. A low pectin concentration (0.1 wt%) was found to give rapid serum separation of moderately dilute emulsions (11 vol% oil, 0.6 wt% protein) and highly pseudoplastic rheological behaviour of concentrated emulsions (40 vol% oil, 2 wt% protein). We attribute this to reversible depletion flocculation of protein-coated droplets by non-adsorbed pectin. At ionic strength below 0.1 M, the initial average droplet sizes, the creaming behaviour, and the rheology were found to be similar for emulsions made with either of the individual caseins (αs1 and β) or with sodium caseinate. At higher ionic strength, however, whereas emulsions containing β-casein or sodium caseinate were stable, the corresponding αs1-casein emulsions exhibited irreversible salt-induced flocculation which was not inhibited by the presence of the pectin.  相似文献   

2.
A primary emulsion was prepared by homogenizing 10 wt% corn oil with 90 wt% aqueous β-lactoglobulin solution (0.5 wt% β-lg, pH 3 or 7) using a two-stage high-pressure valve homogenizer. This emulsion was mixed with aqueous pectin (citrus, 59% DE) stock solution (2 wt%, pH 3 or 7) and NaCl solution to yield secondary emulsions with 5 wt% corn oil, 0.225 wt% β-lactoglobulin, 0.2 wt% pectin and 0 or 100 mM NaCl. The final pH of the emulsions was then adjusted (3–8). Primary and secondary emulsions were ultrasonically treated (30 s, 20 kHz, 40% amplitude) to disrupt any flocculated droplets. Secondary emulsions were more stable than primary emulsions at intermediate pHs. Secondary emulsions prepared at pH 7 had smaller particle diameters (0.35 to 6 μm) than those prepared at pH 3 (0.42 to 18 μm) across the whole pH range studied, and also had smaller diameters than the primary emulsions (0.35 to 14 μm). Ultrasound treatment reduced the particle diameter of both primary and secondary emulsions and lowered the rate of creaming. The presence of NaCl screened the charges and thus the electrostatic interaction between biopolymer molecules and primary emulsion droplets. Secondary emulsions were more stable to the presence of 100 mM NaCl at low pHs (3–4) than primary emulsions. This study shows that stable emulsions can be prepared by engineering their interfacial membranes using the electrostatic interaction of natural biopolymers, especially at intermediate pHs where proteins normally fail to function.  相似文献   

3.
Tuna oil-in-water emulsions (5 wt% tuna oil, 100 mM acetate buffer, pH 3.0) containing droplets stabilized either by lecithin membranes (primary emulsions) or by lecithin–chitosan membranes (secondary emulsions) were produced. The secondary emulsions were prepared using a layer-by-layer electrostatic deposition method that involved adsorbing cationic chitosan onto the surface of anionic lecithin-stabilized droplets. Primary and secondary emulsions were prepared in the absence and presence of corn syrup solids (a carbohydrate widely used in the micro-encapsulation of oils) and then their stability to environmental stresses was monitored. The secondary emulsions had better stability to droplet aggregation than primary emulsions exposed to thermal processing (30–90 °C for 30 min), freeze-thaw cycling (−18 °C for 22 h/30 °C for 2 h), high sodium chloride contents (200 mM NaCl) and freeze-drying. The addition of corn syrup solids decreased the stability of primary emulsions, but increased the stability of secondary emulsions. The interfacial engineering technology used in this study could lead to the creation of food emulsions with novel properties or improved stability to environmental stresses.  相似文献   

4.
黄原胶对酪蛋白酸钠乳状液稳定性的影响   总被引:2,自引:0,他引:2  
研究了一定pH条件下,黄原胶浓度及剪切稀化效应对酪蛋白酸钠乳状液稳定性的影响。结果表明,在酸性条件下,黄原胶无法抑制酪蛋白的变性沉淀,乳液在制备之初,即产生严重絮凝。在中性和弱碱性条件下,黄原胶在一定浓度范围内,诱发了乳状液的排斥絮凝;体系的pH显著影响了乳状液的稳定性,pH6条件下,较低的黄原胶浓度(0.2wt%)便可赋予乳状液良好的稳定性。均质过程大大降低了黄原胶的粘度,导致乳状液的稳定性下降,与添加未经均质处理的黄原胶相比,添加量增大近一倍,才能获得稳定的乳状液。  相似文献   

5.
The effect of carboxymethylcellulose (CMC) on the properties of oil-in-water emulsions prepared with sodium caseinate (CN) was studied at different pHs (4–7). At pH 7, the surface protein coverage increased gradually with increasing CMC concentration, followed by a preferential adsorption of β-casein. While at pH 4, a sharp decrease in surface protein coverage was noted between 0 and 0.3 wt.% CMC, and no obvious difference in protein composition was observed. ζ-Potential measurements indicated that CMC adsorbed onto the CN-coated droplets at pH 4–5, but not at pH 6–7. As a result, the excess of non-adsorbed CMC induced depletion flocculation in the neutral emulsions. However, the acidic emulsions containing high levels of CMC (>0.3 wt.%) remained stable after 60 days of storage due to the formation of multilayer structures. At pH 4, CMC desorbed from the droplet surfaces at high NaCl concentrations, leading to lower emulsion stability.  相似文献   

6.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

7.
《Food Hydrocolloids》2003,17(1):87-93
The influence of an anionic surfactant (sodium dodecyl sulfate, SDS) on the thermal stability of emulsions stabilized by a globular protein (bovine serum albumin, BSA) was examined. 1 wt% n-hexadecane oil-in-water emulsions (0.5 wt% BSA, 100 mM NaCl, 20 mM imidizole, pH 7.0) were held isothermally at temperatures from 30 to 90 °C for 30 min. Extensive droplet flocculation was only observed in emulsions held at 90 °C, which lead to rapid creaming instability. The thermal stability of emulsions heated at 90 °C could be greatly improved by adding SDS at surfactant-to-protein molar ratios (R) greater than 5 (∼0.01 wt% SDS). On the other hand, adding surfactant (0<R<600) to the emulsions after heating could not prevent extensive droplet aggregation. Adding SDS to emulsions prior to heating may have improved their thermal stability by increasing the electrostatic repulsion between the lipid droplets or by increasing the denaturation temperature of the adsorbed proteins. These results may have important applications in the development of heat-stable emulsions.  相似文献   

8.
The purpose of this study was to examine the influence of a non-ionic cosurfactant (Tween 20) on the formation and properties of electrostatic complexes consisting of charged oil droplets and charged biopolymers. The mean droplet diameters in oil-in-water emulsions prepared using a membrane homogenizer were considerably larger when β-lactoglobulin (BLG) was used alone (≈8 μm), than when it was used in combination with Tween 20 (≈2 μm). The cationic oil droplets formed by membrane homogenization (4.0 μm pore size) were mixed with either alginate (anionic) solution (1% oil: 0–0.5% alginate: pH 3.5) or with alginate (anionic) and then chitosan (cationic) solutions (0.4% oil: 0.1% alginate; 0–0.2% chitosan: pH 4.5). The electrical characteristics, microstructure, and physical stability of the electrostatic complexes formed were determined. Under certain conditions multilayer emulsions consisting of oil droplets coated by alginate or alginate/chitosan layers were formed, whereas under other conditions microclusters consisting of aggregated oil droplets embedded within alginate or alginate/chitosan complexes were formed. The presence of the cosurfactant had a major impact on the electrical charge and dimensions of the electrostatic complexes formed. This study shows that various kinds of electrostatic complexes can be formed from charged oil droplets and charged biopolymers, and that their functional characteristics can be controlled using non-ionic cosurfactants.  相似文献   

9.
Aiqian Ye   《Food chemistry》2008,110(4):946-952
The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC.  相似文献   

10.
The freeze–thaw stability of 5 wt% hydrogenated palm oil-in-water emulsions (pH 3) containing droplets stabilized by sodium dodecyl sulfate (SDS)–chitosan–pectin membranes was studied. The multilayered interfacial membranes were created using an electrostatic layer-by-layer deposition method. The ζ-potential, mean particle diameter, fat destabilization, apparent viscosity and microstructure of the emulsions were used to examine the influence of freezing on their stability. Emulsions containing oil droplets stabilized only by SDS were highly unstable to droplet coalescence when either the oil phase became partially crystallized or the water phase crystallized. Emulsions containing oil droplets stabilized by SDS–chitosan membranes were stable to droplet coalescence, but unstable to droplet flocculation. Emulsions containing droplets stabilized by SDS–chitosan–pectin membranes were stable to both droplet coalescence and flocculation. The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to freeze–thaw cycling.  相似文献   

11.
An influence of low molecular weight (LMW) chitosan on physicochemical properties and stability of low-acid (pH 6) tuna oil-in-water emulsion stabilized by non-ionic surfactant (Tween 80) was studied. The mean droplet diameter, droplet charge (ζ-potential), creaming stability and microstructure of emulsions (5 wt% oil) were evaluated. The added chitosan was adsorbed on the surface of oil droplets stabilized by Tween 80 through electrostatic interactions. Such addition of chitosan at different concentrations (0–10 wt%) to emulsions showed slight effect on the mean droplet diameter. However, the degree of flocculation was a function of chitosan concentration assessed by emulsions' microstructure and creaming index. The impact of chitosan on the strength of the colloidal interaction between the emulsion droplets increased with increasing chitosan concentration. The mean diameter of droplet in emulsions increased with increasing NaCl because of the electrostatic screening effect. The addition of LMW chitosan could be performed to create tuna oil emulsions with low-acid to neutral character, as well as various physicochemical and stability properties suitable for health food products.  相似文献   

12.
Corn oil-in-water emulsions (20 wt%, d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl), and particle size, rheology and creaming were measured at 30°C. Appreciable droplet flocculation occurred near the isoelectric point of whey protein (pH 4–6), especially at higher NaCl concentrations. Droplet flocculation increased emulsion viscosity and decreased stability to creaming. Results are related to the influence of environmental conditions on electrostatic and other interactions between droplets.  相似文献   

13.
Creaming stability of emulsions formed with calcium caseinate, determined after storage of emulsions at 20 °C for 24 h, increased gradually with an increase in protein concentration from 0.5% to 2.0%; further increases in caseinate concentration had much less effect. In contrast, the creaming stability of sodium caseinate emulsions showed a decreased with an increase in protein concentration from 0.5% to 3.0%. Confocal laser micrographs of emulsions formed with >2% sodium caseinate showed extensive flocculation of oil droplets with the appearance of a network structure. However, emulsions formed with calcium caseinate or emulsions formed with low concentrations of sodium caseinate (0.5% and 1.0%) were homogenous with no sign of flocculation.  相似文献   

14.
The potential of beet pectin for improving the physical and chemical stabilities of emulsions containing silk fibroin coated droplets was investigated. Five wt.% corn oil-in-water emulsions containing fibroin-coated droplets (0.5 wt.% fibroin) and anionic pectin (0.05 wt.%) were prepared at pH 7. The pH of these emulsions was then adjusted to pH 4, so that the anionic pectin molecules electrostatically deposited to the fibroin-coated droplets. The influence of pH (3 to 7) and sodium chloride concentrations (0 to 500 mM) on the properties of primary (0 wt.% pectin) and secondary (0.05 wt.% pectin) emulsions was studied. Pectin was deposited to the droplet surfaces at pH 3, 4, and 5, but not at pH 6 and 7. In addition, secondary emulsions were stable up to higher ionic strengths (< 500 mM) than primary emulsions (< 200 mM). The addition of beet pectin also prolonged the lag phase of lipid oxidation in the emulsions as determined by the formation of lipid hydroperoxides and headspace hexanal. The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of silk fibroin in the industry.  相似文献   

15.
The influence of the κ-carrageenan concentration and pH on the properties of oil-in-water multilayered emulsions was studied. Multilayered emulsions were prepared by the mixture of a primary emulsion stabilized by 0.5% (w/v) sodium caseinate (Na-CN) with κ-carrageenan solutions with different concentrations (0.05–1% w/v). The emulsions were evaluated at pH 7 and 3.5. At pH 7, there was little adsorption of κ-carrageenan onto the droplet surface and a depletion flocculation was observed when the polysaccharide concentration exceeded 0.5% (w/v). At pH 3.5, a mixed κ-carrageenan–Na-CN second layer was formed around the protein-covered droplets and the emulsions showed bridging flocculation at lower polysaccharide concentrations (0.05–0.25% w/v). Stable emulsions could be formed with the highest κ-carrageenan concentration (1% w/v) at both pH values (7.0 and 3.5). Thus, stable emulsions were successfully produced using protein–polysaccharide interfacial complexes, and the oil droplet diameter, zeta potential and rheological properties of these emulsions were not affected by changes in the pH.  相似文献   

16.
Isolated wheat protein (IWP) is an acidic deamidated wheat protein. The deamidation process enhances the protein solubility at pHs greater than 6, and therefore its potential ability to act as a food emulsifier. The interfacial properties and the mechanism by which this protein stabilises oil-in-water emulsions were investigated by measuring the protein's absorbed layer thickness on latex particles, its interfacial rheology, and the colloidal and thermal stability of IWP stabilised emulsions. IWP forms a relatively thick interfacial layer of 18 nm upon adsorption onto latex beads, suggesting that the protein adsorbed with the long axis perpendicular to the surface, i.e. end-on, at a full protein coverage. The interfacial rheology measurement showed that IWP formed a relatively weak fluid-like interface. Similar to other protein emulsifiers, the colloidal stability of IWP emulsions is provided largely through electrostatic repulsion. Although IWP emulsions were sensitive to salt induced flocculation, the presence of excess protein in the aqueous phase (e.g. 4 wt%) was able to reduce the effect of salt screening (50 mM CaCl2) on a 25 wt% oil-in-water emulsion completely. The emulsions underwent minimal coalescence when droplets were in close contact, e.g. flocculated, because the interfacial layer of IWP provides a barrier to droplet coalescence, even in high salt environments. IWP emulsions were resistant to thermal treatment with no changes in particle size observed when the emulsions were heated (up to 90 °C for 20 min) in the absence or the presence of 150 mM NaCl. The heat stability of IWP emulsions is thought to arise from the structure of IWP at the interface. A lack of free cysteines combined with few hydrophobic regions meant that there were minimal interactions between protein molecules adsorbed onto the same droplet or on neighbouring droplets. The unique interfacial properties of IWP, e.g. its physical layer thickness and the structure provide enhanced stability for emulsions against coalescence and heating.  相似文献   

17.
The impact of dietary fibers on lipid digestion within the gastrointestinal tract depends on their molecular and physicochemical properties. In this study, the influence of the electrical characteristics of dietary fibers on their ability to interfere with the digestion of protein‐coated lipid droplets was investigated using an in vitro small intestine model. Three dietary fibers were examined: cationic chitosan; anionic alginate; neutral locust bean gum (LBG). The particle size, ζ‐potential, microstructure, and apparent viscosity of β‐lactoglobulin stabilized oil‐in‐water emulsions containing different types and levels of dietary fiber were measured before and after lipid digestion. The rate and extent of lipid digestion depended on polysaccharide type and concentration. At relatively low dietary fiber levels (0.1 to 0.2 wt%), the initial lipid digestion rate was only reduced by chitosan, but the final extent of lipid digestion was unaffected by all 3 dietary fibers. At relatively high dietary fiber levels (0.4 wt%), alginate and chitosan significantly inhibited lipid hydrolysis, whereas LBG did not. The impact of chitosan on lipid digestion was attributed to its ability to promote fat droplet aggregation through bridging flocculation, thereby retarding access of the lipase to the droplet surfaces. The influence of alginate was mainly ascribed to its ability to sequester calcium ions and promote depletion flocculation.  相似文献   

18.
ABSTRACT: Calcium chloride (0 to 10 mM) and potassium chloride (0 to 600 mM) were added into model nutritional beverage emulsions containing 7% (w/w) soybean oil droplets and 0.35% (w/w) whey protein isolate (pH 6.7). The particle size, surface charge, viscosity, and creaming stability of the emulsions then were measured. The surface charge decreased with increasing mineral ion concentration. The particle size, viscosity, and creaming instability of the emulsions increased appreciably above critical CaCl2 (3 mM) and KCl (200 mM) concentrations because of droplet flocculation. The origin of this effect was attributed to reduction of the electrostatic repulsion between droplets due to electrostatic screening and ion binding. CaCl2 promoted emulsion instability more efficiently than KCl because Ca2+ ions are more effective at reducing electrostatic repulsion than K+ ions.  相似文献   

19.
《Food Hydrocolloids》2006,20(2-3):269-276
The heat stability of emulsions (4 wt% corn oil) formed with whey protein isolate (WPI) or extensively hydrolysed whey protein (WPH) products and containing xanthan gum or guar gum was examined after a retort treatment at 121 °C for 16 min. At neutral pH and low ionic strength, emulsions stabilized with both 0.5 and 4 wt% WPI (intact whey protein) were stable against retorting. The amount of β-lactoglobulin (β-lg) at the droplet surface increased during retorting, especially in the emulsion containing 4 wt% protein, whereas the amount of adsorbed α-lactalbumin (α-la) decreased markedly. Addition of xanthan gum or guar gum caused depletion flocculation of the emulsion droplets, but this flocculation did not lead to their aggregation during heating. In contrast, the droplet size of emulsions formed with WPH increased during heat treatment, indicating that coalescence had occurred. The coalescence during heating was enhanced considerably with increasing concentration of polysaccharide in the emulsions, up to 0.12% and 0.2% for xanthan gum and guar gum, respectively; whey peptides in the WPH emulsions formed weaker and looser, mobile interfacial structures than those formed with intact whey proteins. Consequently, the lack of electrostatic and steric repulsion resulted in the coalescence of flocculated droplets during retort treatment. At higher levels of xanthan gum or guar gum addition, the extent of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

20.
Oil-in-water emulsions (20 wt% soy oil) with lactoferrin or β-lactoglobulin (β-lg) as the interfacial layer were prepared using a two-stage valve homogenizer. At pH 6.8, lactoferrin produces a stable cationic emulsion whereas β-lg forms an anionic emulsion. These emulsions were mixed with an artificial saliva that contained a range of mucin concentrations and salts. Negatively charged mucin was shown to interact readily with the positively charged lactoferrin-stabilized emulsion droplets to provide a mucin coverage of approximately 1 mg/m2. As expected, the negatively charged β-lg-stabilized emulsion droplets had lower mucin coverage (0.6 mg/m2 surface load) under the same conditions. The β-lg-stabilized emulsions were stable but showed depletion flocculation at higher mucin levels (≥1.0 wt%). In contrast, lactoferrin-stabilized emulsion droplets showed considerable aggregation in the presence of salts but in the absence of mucin. This salt-induced aggregation was reduced in the presence of mucin, possibly because of its binding to the positively charged lactoferrin-stabilized emulsion droplets and thus a reduction in the positive charge at the lactoferrin-coated droplet surface. However, at higher mucin concentration (≥2.0 wt%), lactoferrin-stabilized emulsions also showed droplet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号