首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We employed magnetic ACmode atomic force microscopy (MACmode AFM) as a novel dynamic force microscopy method to image surfaces of biological membranes in their native environments. The lateral resolution achieved under optimized imaging conditions was in the nanometer range, even when the sample was only weakly attached to the support. Purple membranes (PM) from Halobacterium salinarum were used as a test standard for topographical imaging. The hexagonal arrangement of the bacteriorhodopsin trimers on the cytoplasmic side of PM was resolved with 1.5nm lateral accuracy, a resolution similar to images obtained in contact and tapping-mode AFM. Human rhinovirus 2 (HRV2) particles were attached to mica surfaces via nonspecific interactions. The capsid structure and 2nm sized protein loops of HRV2 were routinely obtained without any displacement of the virus. Globular and filamentous structures on living and fixed endothelial cells were observed with a resolution of 5-20nm. These examples show that MACmode AFM is a favorable method in studying the topography of soft and weakly attached biological samples with high resolution under physiological conditions.  相似文献   

2.
Ge G  Han D  Lin D  Chu W  Sun Y  Jiang L  Ma W  Wang C 《Ultramicroscopy》2007,107(4-5):299-307
Magnetic AC mode (MAC mode) atomic force microscopy (AFM), a novel type of tapping mode AFM in which the cantilever is driven directly by a magnetic field, is a powerful tool for imaging with high spatial resolution and better signal-to-noise in liquid environment. It may largely extend the application of AFM to living samples, especially those are sensitive to cantilever forces, even to multilayer tissue samples. However, there are few reports on the imaging of living cells by MAC mode AFM previously. In our present study, we explore the optimal imaging conditions of MAC mode AFM on living astrocytes and fresh arterial intima surface. We also used nude tips for PicoTREC panel (i.e., Aux in BNC, a new data collecting channel) to image living samples and discussed its difference with phase imaging. We show that living biological samples can be imaged by MAC mode AFM at details of comparable resolution as those by high resolution scanning electron microscopy. Furthermore, the combination of height, amplitude, phase and TREC panel signals provide abundant informations for the characteristics of living samples, such as topography, profile, stiffness and adhesion.  相似文献   

3.
Atomic force microscopy has been used to visualize nano‐scale structures of various cellular components and to characterize mechanical properties of biomolecules. In spite of its ability to measure non‐fixed samples in liquid, the application of AFM for living cell manipulation has been hampered by the lack of knowledge of the mechanical properties of living cells. In this study, we successfully combine AFM imaging and force measurement to characterize the mechanical properties of the plasma membrane and the nuclear envelope of living HeLa cells in a culture medium. We examine cantilevers with different physical properties (spring constant, tip angle and length) to find out the one suitable for living cell imaging and manipulation. Our results of elasticity measurement revealed that both the plasma membrane and the nuclear envelope are soft enough to absorb a large deformation by the AFM probe. The penetrations of the plasma membrane and the nuclear envelope were possible when the probe indents the cell membranes far down close to a hard glass surface. These results provide useful information to the development of single‐cell manipulation techniques.  相似文献   

4.
We present high-resolution aperture probes based on non-contact silicon atomic force microscopy (AFM) cantilevers for simultaneous AFM and near-infrared scanning near-field optical microscopy (SNOM). For use in near-field optical microscopy, conventional AFM cantilevers are modified by covering their tip side with an opaque aluminium layer. To fabricate an aperture, this metal layer is opened at the end of the polyhedral probe using focused ion beams (FIB). Here we show that apertures of less than 50 nm can be obtained using this technique, which actually yield a resolution of about 50 nm, corresponding to λ/20 at the wavelength used. To exclude artefacts induced by distance control, we work in constant-height mode. Our attention is particularly focused on the distance dependence of resolution and to the influence of slight cantilever bending on the optical images when scanning at such low scan heights, where first small attractive forces exerted on the cantilever become detectable.  相似文献   

5.
Atomic force microscopy (AFM) is an emerging technique for imaging biological samples at subnanometer resolution; however, the method is not widely used for cell imaging because it is limited to analysis of surface topology. In this study, we demonstrate identification and ultrastructural imaging of microfilaments using new approaches based on AFM. Photodynamic therapy (PDT) with a new chlorin-based photosensitizer DH-II-24 induced cell shrinkage, membrane blebbing, and reorganization of cytoskeletons in bladder cancer J82 cells. We investigated cytoskeletal changes using confocal microscopy and atomic force microscopy. Extracellular filaments formed by PDT were analyzed with a tandem imaging approach based on confocal microscopy and atomic force microscopy. Ultrathin filaments that were not visible by confocal microscopy were identified as microfilaments by on-stage labeling/imaging using atomic force microscopy. Furthermore, ultrastructural imaging revealed that these microfilaments had a stranded helical structure. Thus, these new approaches were useful for ultrastructural imaging of microfilaments at the molecular level, and, moreover, they may help to overcome the current limitations of fluorescence-based microscopy and atomic force microscopy in cell imaging.  相似文献   

6.
Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.  相似文献   

7.
We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.  相似文献   

8.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5.  相似文献   

9.
In this study we report an atomic force microscopy (AFM) investigation of the actin cortical cytoskeleton of Xenopus laevis oocytes. Samples consisted of inside‐out orientated plasma membrane patches of X. laevis oocytes with overhanging cytoplasmic material. They were spread on a freshly cleaved mica surface, subsequently treated with Triton X‐100 detergent and chemically fixed. The presence of actin fibres in oocyte patches was proved by fluorescence microscopy imaging. Contact mode AFM imaging was performed in air in constant force conditions. Reproducible high‐resolution AFM images of a filamentous structure were obtained. The filamentous structure was identified as an actin cortical cytoskeleton, investigating its disaggregation induced by cytochalasin D treatment. The thinnest fibres showed a height of 7 nm in accordance with the diameter of a single actin microfilament. The results suggest that AFM imaging can be used for the high‐resolution study of the actin cortical cytoskeleton of the X. laevis oocyte and its modifications mediated by the action of drugs and toxins.  相似文献   

10.
Here we demonstrate a new microscopic method that combines atomic force microscopy (AFM) with fluorescence resonance energy transfer (FRET). This method takes advantage of the strong distance dependence in Förster energy transfer between dyes with the appropriate donor/acceptor properties to couple an optical dimension with conventional AFM. This is achieved by attaching an acceptor dye to the end of an AFM tip and exciting a sample bound donor dye through far-field illumination. Energy transfer from the excited donor to the tip immobilized acceptor dye leads to emission in the red whenever there is sufficient overlap between the two dyes. Because of the highly exponential distance dependence in this process, only those dyes located at the apex of the AFM tip, nearest the sample, interact strongly. This limited and highly specific interaction provides a mechanism for obtaining fluorescence contrast with high spatial resolution. Initial results in which 400 nm resolution is obtained through this AFM/FRET imaging technique are reported. Future modifications in the probe design are discussed to further improve both the fluorescence resolution and imaging capabilities of this new technique.  相似文献   

11.
Atomic force microscopy (AFM) has been used to image a wide variety of cells. Fixed and dried-coated, wet-fixed or living cells were investigated. The major advantage of AFM over SEM is the avoidance of vacuum and electrons, whereas imaging can be done at environmental pressure and in aqueous conditions. Evidence of the successful application of AFM in biological imaging is provided by comparing results of AFM with SEM and/or TEM. In this study, we investigated surface and submembranous structures of living and glutaraldehyde-fixed colon carcinoma cells, skin fibroblasts and liver macrophages by AFM. Special attention was paid to the correct conditions for the acquisition of images of the surface of these cells, because quality SEM examinations have already been abundantly presented.
AFM imaging of living cells revealed specific structures, such as the cytoskeleton, which were not observed by SEM. Membrane structures, such as ruffles, lamellipodia, microspikes and microvilli, could only clearly be observed after fixing the cells with 0.1% glutaraldehyde. AFM images of living cells were comparable to SEM images of fixed, dried and coated cells, but contained a number of artefacts due to tip–sample interaction. In addition, AFM imaging allowed the visualization of cytoplasmic submembranous structures without the necessity for further preparative steps, allowing us: (i) to follow cytoskeletal changes in fibroblasts under the influence of the microfilament disrupting agent latrunculin A; (ii) to study particle phagocytosis in macrophages. Therefore, in spite of the slow image acquisition of the AFM, the instrument can be used for high-resolution real-time studies of dynamic changes in submembranous structures.  相似文献   

12.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

13.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

14.
We have developed a procedure for partially relaxing the barley metaphase chromosomes and exposing fibrous structures from the chromosomes. The observation by atomic force microscopy (AFM) showed that the fibrous structures are typically 0.5 to 1 microm long and 40 to 50 nm in diameter. In higher magnification imaging, we found the fibrous structures were composed of aligned granules and looked like "knobby fiber." These observations are consistent with previously reported features of chromatin fiber observed by AFM and scanning electron microscopy, suggesting that the structures correspond to 30 nm chromatin fibers. We observed the chromatin fiber extending straight from the periphery of the chromosomes in most cases, but fibers with different shapes, such as loop and spiral, were also observed. The procedure reported here will provide a new approach for observing the organization of chromatin fiber to higher-order structures by AFM and other high-resolution microscopy.  相似文献   

15.
With the integration of submicro- and nanoelectrodes into atomic force microscopy (AFM) probes using microfabrication techniques, an elegant approach combining scanning electrochemical microscopy (SECM) with AFM has recently been introduced. Simultaneous contact mode imaging of a micropatterned sample with immobilized enzyme spots and imaging of enzyme activity is shown. In contrast to force spectroscopy the conversion of an enzymatic byproduct is directly detected during AFM imaging and correlated to the activity of the enzyme.  相似文献   

16.
Myoblast therapy relies on the integration of skeletal muscle stem cells into distinct muscular compartments for the prevention of clinical conditions such as heart failure, or bladder dysfunction. Understanding the fundamentals of myogenesis is hence crucial for the success of these potential medical therapies. In this report, we followed the rearrangement of the surface membrane structure and the actin cytoskeletal organization in C2C12 myoblasts at different stages of myogenesis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). AFM imaging of living myoblasts undergoing fusion unveiled that within minutes of making cell–cell contact, membrane tubules appear that unite the myoblasts and increase in girth as fusion proceeds. CLSM identified these membrane tubules as built on scaffolds of actin filaments that nucleate at points of contact between fusing myoblasts. In contrast, similarly behaving membrane tubules are absent during cytokinesis. The results from our study in combination with recent findings in literature further expand the understanding of the biochemical and membrane structural rearrangements involved in the two fundamental cellular processes of division and fusion.  相似文献   

17.
本研究利用原子力显微技术(AFM)观察原代培养的神经胶质细胞及其相互间的纳米连接结构。选择生长良好的神经胶质细胞用戊二醛固定30分钟,固定于AFM基底上进行扫描成像,用AFM脱机软件(SPM OFFLINE 2.20)进行检测。观察到胶质细胞平铺于培养皿的底部,胞体形状不规则,表面较扁平。突起丰富,但没有极性,无轴突树突之分,还观察到两胶质细胞间存在长程纤维管状连接结构。  相似文献   

18.
Atomic force microscopy (AFM) provides a new technology to visualize the cellular topography and quantify the molecular interactions at nanometer spatial resolution. In this work, AFM was used to image the cellular topography and measure the molecular force of pathological cells from B‐cell lymphoma patients. After the fluorescence staining, cancer cells were recognized by their special morphological features and then the detailed topography was visualized by AFM imaging. The AFM images showed that cancer cells were much rougher than healthy cells. CD20 is a surface marker of B cells and rituximab is a monoclonal antibody against CD20. To measure the CD20‐rituximab interaction forces, the polyethylene glycol (PEG) linker was used to link rituximab onto the AFM tip and the verification experiments of the functionalized probe indicated that rituximab molecules were successfully linked onto the AFM tip. The CD20‐rituximab interaction forces were measured on about 20 pathological cells and the force measurement results indicated the CD20‐rituximab binding forces were mainly in the range of 110–120 pN and 130–140 pN. These results can improve our understanding of the topography and molecular force of lymphoma pathological cells. SCANNING 35:40‐46, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir–Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3 nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

20.
We present a remotely-controlled device for sample stretching, designed for use with atomic force microscopy (AFM) and providing electrical connection to the sample. Such a device enables nanoscale investigation of electrical properties of thin gold films deposited on polydimethylsiloxane (PDMS) substrate as a function of the elongation of the structure. Stretching and releasing is remotely controlled with use of a dc actuator. Moreover, the sample is stretched symmetrically, which gives an opportunity to perform AFM scans in the same site without a time-consuming finding procedure. Electrical connections to the sample are also provided, enabling Kelvin probe force microscopy (KPFM) investigations. Additionally, we present results of AFM imaging using the stretching stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号