首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1–32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations.  相似文献   

2.
Natural gas (NG) is one of the most important and successful alternative fuels for vehicles. Engine combustion and emission fuelled with natural gas have been reviewed by NG/gasoline bi-fuel engine, pure NG engine, NG/diesel dual fuel engine and HCNG engine. Compared to using gasoline, bi-fuel engine using NG exhibits higher thermal efficiency; produces lower HC, CO and PM emissions and higher NOx emission. The bi-fuel mode can not fully exert the advantages of NG. Optimization of structure design for engine chamber, injection parameters including injection timing, injection pressure and multi injection, and lean burn provides a technological route to achieve high efficiency, low emissions and balance between HC and NOx. Compared to diesel, NG/diesel dual fuel engine exhibits longer ignition delay; has lower thermal efficiency at low and partial loads and higher at medium and high loads; emits higher HC and CO emissions and lower PM and NOx emissions. The addition of hydrogen can further improve the thermal efficiency and decrease the HC, CO and PM emissions of NG engine, while significantly increase the NOx emission. In each mode, methane is the major composition of THC emission and it has great warming potential. Methane emission can be decreased by hydrogen addition and after-treatment technology.  相似文献   

3.
氢气/柴油发动机NOx和微粒排放特性的数值模拟   总被引:1,自引:0,他引:1  
在柴油引燃氢气/柴油发动机中,氢气的引入会对氢气/空气混合气氛围中的柴油雾化特性和燃烧特性产生直接的影响,进而对发动机的排放产生影响.应用改进的KIVA.3V程序,对氢气/柴油发动机的N0x和微粒排放特性进行了模拟研究,分析了氢气的引入对氢气/柴油发动机N0。和微粒排放的影响.结果表明:低负荷时,氢气替代部分柴油后,发...  相似文献   

4.
In this research, effects of hydrogen addition on a diesel engine were investigated in terms of engine performance and emissions for four cylinders, water cooled diesel engine. Hydrogen was added through the intake port of the diesel engine. Hydrogen effects on the diesel engine were investigated with different amount (0.20, 0.40, 0.60 and 0.80 lpm) at different engine load (20%, 40%, 60%, 80% and 100% load) and the constant speed, 1800 rpm. When hydrogen amount is increased for all engine loads, it is observed an increase in brake specific fuel consumption and brake thermal efficiency due to mixture formation and higher flame speed of hydrogen gas according to the results. For the 0.80 lpm hydrogen addition, exhaust temperature and NOx increased at higher loads. CO, UHC and SOOT emissions significantly decreased for hydrogen gas as additional fuel at all loads. In this study, higher decrease on SOOT emissions (up to 0.80lpm) was obtained. In addition, for 0.80 lpm hydrogen addition, the dramatic increase in NOx emissions was observed.  相似文献   

5.
Cooled and heavy exhaust gas recirculation (EGR) has been used to control NOx emissions from diesel engines, but its application has been limited by low thermal efficiency or high unburned hydrocarbon emissions. In this study, hydrogen was added into the intake manifold of a diesel engine to investigate its effect on NOx emissions and thermal efficiency under low-temperature and heavy-EGR conditions. The energy content of the introduced hydrogen was varied from an equivalent of 2-10% of the total fuel’s lower heating value. A test engine was operated at a constant diesel fuel injection rate and engine speed to maintain the same engine control unit (ECU) parameters, such as injection time, while observing changes in the carbon dioxide produced due to variations in the hydrogen supply. Additionally, the EGR system was modified to control the EGR ratio. The temperature of the intake gas manifold was controlled by both the EGR cooler and the inter-cooling devices to maintain a temperature of 25 °C. Exhaust NOx emissions were measured for different hydrogen flow rates at a constant EGR ratio. The test results demonstrated that the supplied hydrogen reduced the specific NOx emissions at a given EGR ratio while increasing the brake thermal efficiency. This behavior was observed over constant EGR ratios of 2, 16, and 31%. The rate of NOx reduction due to hydrogen addition increased at higher EGR ratios compared with pure diesel combustion at the same EGR ratio. At an EGR ratio of 31%, when the hydrogen equivalent to 10% of the total fuel’s lower heating value was supplied, the specific NOx was lowered by 25%, and there was a slight increase in the brake thermal efficiency. This behavior was investigated by measuring and analyzing changes in the exhaust gas composition, including oxygen, carbon dioxide, and water vapor.  相似文献   

6.
Today, the world faces a number of challenges on global level. The optimum replacement for fossil fuels is one of these challenges. Hydrogen in the past has been and continues to be used by numerous researchers in diesel engines. However, high NOx emissions and low replacement of hydrogen fuel are the concern with many researchers. In the present study, di-tert butyl peroxide (DTBP) has been used as an additive in diesel fuel, to investigate the performance and exhaust emissions of the diesel engine working on dual fuel mode by using hydrogen as secondary fuel. At low, medium and high load conditions, the maximum increase in brake thermal efficiency was observed to be 87.50%, 14.68% and 5.89% respectively for 1%, 3% and 5% of additive (DTBP) by 40% of hydrogen fuel substitution, as compared to diesel fuel operation. Moreover, by addition of 4% di-tert butyl peroxide (DTBP) in diesel engine working on dual fuel mode showed 33.82%, 10.27% and 29.27% reduction in NOx emission at low, medium and high load conditions respectively at 40% hydrogen substitution, as compared to dual fuel operation using hydrogen as secondary fuel without additives. By addition of 5% additive (DTBP) at 69% load condition and 40% hydrogen substitution, reduces CO emissions by 38.66% as compared to dual fuel operation, using hydrogen as secondary fuel.  相似文献   

7.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

8.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

9.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

10.
Stringent emission norms and rapid depletion of petroleum resources have resulted in a continuous effort to search for alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has both the benefits and limitation to be used as a fuel in an automotive engine system. In the present investigation, hydrogen was injected into the intake manifold by using a hydrogen gas injector and diesel was introduced in the conventional, mode which also acts as an ignition source for hydrogen combustion. The flow rate of hydrogen was set at 5.5 l min?1 at all the load conditions. The injection timing was kept constant at top dead center (TDC) and injection duration was adjusted to find the optimized injection condition. Experiments were conducted on a single cylinder, four stroke, water‐cooled, direct injection diesel engine coupled to an electrical generator. At 75% load the maximum brake thermal efficiency for hydrogen operation at injection timing of TDC and with injection duration of 30°CA is 25.66% compared with 21.59% for diesel. The oxides of nitrogen (NOX) emission are 21.7 g kWh?1 for hydrogen compared with diesel of 17.9 g k Wh?1. Smoke emissions reduced to 1 Bosch smoke number (BSN) in hydrogen compared with diesel of 2.2 BSN. Hydrogen operation in the dual fuel mode with diesel exhibits a better performance and reduction in emissions compared with diesel in the entire load spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This work investigates the performance and carbon dioxide (CO2) emissions from a stationary diesel engine fueled with diesel oil (B5) and hydrogen (H2). The performance parameters investigated were specific fuel consumption, effective engine efficiency and volumetric efficiency. The engine was operated varying the nominal load from 0 kW to 40 kW, with diesel oil being directly injected in the combustion chamber. Hydrogen was injected in the intake manifold, substituting diesel oil in concentrations of 5%, 10%, 15% and 20% on energy basis, keeping the original settings of diesel oil injection. The results show that partial substitution of diesel oil by hydrogen at the test conditions does not affect significantly specific fuel consumption and effective engine efficiency, and decreases the volumetric efficiency by up to 6%. On the other hand the use of hydrogen reduced CO2 emissions by up to 12%, indicating that it can be applied to engines to reduce global warming effects.  相似文献   

12.
This paper presents some experimental investigations on dual fuel operation of a 4 cylinder (turbocharged and intercooled) 62.5 kW gen-set diesel engine with hydrogen, liquefied petroleum gas (LPG) and mixture of LPG and hydrogen as secondary fuels. Results on brake thermal efficiency and emissions, namely, un-burnt hydrocarbon (HC), carbon monoxide (CO), NOx and smoke are presented here. The paper also includes vital information regarding performances of the engine at a wide range of load conditions with different gaseous fuel substitutions. When only hydrogen is used as secondary fuel, maximum enhancement in the brake thermal efficiency is 17% which is obtained with 30% of secondary fuel. When only LPG is used as secondary fuel, maximum enhancement in the brake thermal efficiency (of 6%) is obtained with 40% of secondary fuel. Compared to the pure diesel operation, proportion of un-burnt HC and CO increases, while, emission of NOx and smoke reduces in both cases. On the other hand, when 40% of mixture of LPG and hydrogen is used (in the ratio 70:30) as secondary fuel, brake thermal efficiency enhances by 27% and HC emission reduces by 68%. Further, shortcoming of low efficiency at lower load condition in a dual fuel operation is removed when a mixture of hydrogen and LPG is used as the secondary fuel at higher than 10% load condition.  相似文献   

13.
The purpose of this study is to experimentally investigate the use of grapeseed oil as a fuel substitute obtained from biomass waste from winery industry and the synergic effect of hydrogen addition for compression ignition engine application. The experiments were carried out in a single cylinder, four stroke diesel engine for various loads and energy share of hydrogen. Combustion, performance and emission characteristics of grapeseed biodiesel, neat grapeseed oil and diesel have been analysed and compared with the results obtained with hydrogen induction in the intake manifold in dual fuel mode. At full load, maximum brake thermal efficiency of the engine with diesel, grapeseed biodiesel and neat grapeseed oil has increased from 32.34%, 30.28% and 25.94% to 36.04%, 33.97% and 30.95% for a maximum hydrogen energy share of 14.46%, 14.1% and 12.8% respectively. Although there is an increasing trend in Nitric Oxide emission with hydrogen induction, smoke, brake specific hydrocarbon, carbon monoxide, and carbon dioxide emissions respectively, reduces. Nitric oxide emission of Grapeseed biodiesel with maximum hydrogen share at full load is higher by 43.61% and smoke emission lower by 19.73% compared to biodiesel operation without hydrogen induction.  相似文献   

14.
The aim of this study is to enhance hydrogen energy share in a RCCI engine. The engine under consideration is fueled with diesel oil and natural gas enriched with hydrogen or syngas and is set to operate at 9.4 bar gross indicated mean effective pressure (Mid- Load). The syngas used in this study consists of hydrogen and carbon monoxide which are mixed together on a volumetric ratio of 80:20. A fixed amount of diesel oil is injected per cycle into the combustion chamber of the RCCI engine. Based on two different strategies, hydrogen or syngas mixed with exhaust gas recirculation are admitted gradually along with natural gas while ensuring that always the low temperature combustion concept is fulfilled. The RCCI engine operation is simulated through commercial software coupled with chemical kinetics solver. The simulation results show that without any engine diesel knock occurrence, by adding hydrogen to natural gas, the share of hydrogen energy could be increased up to 40.43% while the engine power output is reduced only by about 1%. Also, syngas addition to natural gas causes that the share of hydrogen energy could be increased up to 27.05% while improves the engine power more than 4%. At the same time, by considering two mentioned strategies, the overall hydrocarbon fuel consumption per cycle can be reduced by up to 46.60% and 33.86%, respectively. Moreover, having the gross indicated efficiency of well over 50% and significant reduction in the engine emissions compared to RCCI combustion fueled solely with natural gas and diesel oil are achievable.  相似文献   

15.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

16.
Energy is an essential prerequisite for economical and social growth of any country. Skyrocketing of petroleum fuel cost s in present day has led to growing interest in alternative fuels like CNG, LPG, Producer gas, Biogas in order to provide suitable substitute to diesel for a compression ignition engine. This paper discusses some experimental investigations on dual fuel operation of a 4 cylinder (turbocharged and intercooled) 62.5 kW gen-set diesel engine with hydrogen, producer gas (PG) and mixture of producer gas and hydrogen as secondary fuels. Results on brake thermal efficiency and emissions, namely, un-burnt hydrocarbon (HC), carbon monoxide (CO), and NOx are presented here. The paper also contains vital information relating to the performances of an engine at a wide range of load conditions with different gaseous fuel substitutions. When only hydrogen is used as secondary fuel, maximum increase in the brake thermal efficiency is 7% which is obtained with 20% of secondary fuel. When only producer gas is used as secondary fuel, maximum decrease in the brake thermal efficiency of 8% is obtained with 30% of secondary fuel. Compared to the neat diesel operation, proportion of un-burnt HC and CO increases, while, emission of NOx reduces in all Cases. On the other hand, when 40% of mixture of producer gas and hydrogen is used (in the ratio (60:40) as secondary fuel, brake thermal efficiency reduces marginally by 3%. Further, shortcoming of low efficiency at lower load condition in a dual fuel operation is removed when a mixture of hydrogen and producer gas is used as the secondary fuel at higher than 13% load condition. Based on the performance studied, a mixture of producer gas and hydrogen in the proportion of 60:40 may be used as a supplementary fuel for diesel conservation.  相似文献   

17.
Experiments were conducted to investigate the combustion and emission characteristics of a diesel engine with addition of hydrogen or methane for dual-fuel operation, and mixtures of hydrogen–methane for tri-fuel operation. The in-cylinder pressure and heat release rate change slightly at low to medium loads but increase dramatically at high load owing to the high combustion temperature and high quantity of pilot diesel fuel which contribute to better combustion of the gaseous fuels. The performance of the engine with tri-fuel operation at 30% load improves with the increase of hydrogen fraction in methane and is always higher than that with dual-fuel operations. Compared with ULSD–CH4 operation, hydrogen addition in methane contributes to a reduction of CO/CO2/HC emissions without penalty on NOx emission. Dual-fuel and tri-fuel operations suppress particle emission to the similar extent. All the gaseous fuels reduce the geometry mean diameter and total number concentration of diesel particulate. Tri-fuel operation with 30% hydrogen addition in methane is observed to be the best fuel in reducing particulate and NOx emissions at 70 and 90% loads.  相似文献   

18.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

19.
Automobiles are one of the major sources of air pollution in the environment. In addition CO2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23° crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5° CA before gas exchange top dead centre (BGTDC) with injection duration of 30° CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NOX emissions were higher by 1–2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO2) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen in the dual fuel mode in a Diesel engine improves the performance and reduces the exhaust emissions from the engine except for HC and NOX emissions.  相似文献   

20.
An experimental study on the performance of a single cylinder engine fueled with hydrogen/gas fule blends was carried out. The performance of engine with different fuel components under the load characteristics of the engine was analyzed. The experimental results showed that with the increase of hydrogen blending ratio, the combustion speed was accelerated, and the maximum torque and maximum pressure in the cylinder were increased; The maximum torque of blended fuel with 40% CO2 was 68.3% of that without CO2; The maximum pressure in cylinder of blended fuel with 40% H2 was 1.6 times higher than that without hydrogen; When the proportion of hydrogen was more than 30%, the torque decreased; When the mixture was blended with 30% N2, the engine torque reached the maximum at the hydrogen ratio of 15%; With the increase of hydrogen blending ratio, the emission of CO increased and the emission of HC and NOx decreased; When the hydrogen blending ratio remained unchanged, the CO emission was the largest at medium load, the HC emission was the largest at small load, and the NOx emission was the largest at high load; When the mixture was blended with 15% H2, with the increase of the proportion of nitrogen, emission of CO decreased, emissions of HC and NOx increased. The research of this paper provided an experimental basis for the design and development of gas fuel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号