首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   

2.
In this paper, a finite volume numerical method is developed to investigate a high temperature polymer exchange membrane (PEM) electrolyzer cell using a three-dimensional and non-isothermal model. The results that are obtained for the single cell are generalized to a full stack of electrolyzer and an exergoeconomic analysis is performed based on the numerical data. The effects of operating temperature, the pressure of cathode, gas diffusion layer (GDL) thickness, and membrane thickness on the energy and exergy efficiencies and exergy cost of the electrolyzer are examined. This study reveals that by increasing the working temperature from 363 K to 393 K, the exergy cost of hydrogen decreases from 23.16 $/GJ to 22.39 $/GJ, and the exergy efficiency of PEM electrolyzer stack at current density of 10,000 A/m2 increases from 0.56 to 0.59. The results indicate that increase of pressure deteriorates the system performance at voltages below 1.4 V. It is concluded that operation of the electrolyzer at higher pressures results in decrease of the exergy cost of hydrogen. Increase of membrane thickness from 50 μm to 183 μm leads to increase of the exergy cost of hydrogen from 23.24 $/GJ to 35.99 $/GJ.  相似文献   

3.
This study investigates a novel solar-driven energy system for co-generating power, hydrogen, oxygen, and hot water. In the proposed system, parabolic trough collectors (PTCs) are used as the heat source of cascaded power cycles, i.e., steam and organic Rankine cycles (SRC and ORC). While the electricity produced by the SRC is supplied to the grid, the energy output of the ORC is used to drive an electrolyzer for hydrogen production. In addition, the use of a thermoelectric generator (TEG) using heat rejected from the ORC condenser for supplying additional electricity to the electrolyzer is investigated. A multi-objective optimization based on the genetic algorithm approach is carried out to estimate the optimal results for the proposed system. The specific cost of the system product and exergy efficiency are the chosen objective parameters to be minimized and maximized, respectively. The results show that, for the optimal system with the TEG, the specific cost of the system product and the exergy efficiency are 30.2$/GJ and 21.9%, respectively, and the produced hydrogen rate is 2.906 kg/h. The results also show that using a TEG increases efficiency and reduces the specific cost of system product. For having the most realistic interpretation of the investigations, the performance of the proposed system is investigated for four cities in Khuzestan province in Iran.  相似文献   

4.
In this article, thermodynamic modeling of a cogeneration system consisting of a series two-stage organic Rankine cycle (STORC) and a proton exchange membrane (PEM) fuel cell is conducted. The fuel cell dissipated heat is utilized as STORC plant input. In order to gain a higher efficiency for the proposed cogeneration system, the condenser of the organic Rankin cycle is replaced by a thermoelectric generator (TEG) to minimize heat loss. Moreover, zeotropic mixtures have been employed due to their lower irreversibility compared to single working fluid. Simulation code is developed in MATLAB software linked with the REFPROP software to extract the thermodynamic properties. This simulation code calculates the exergy efficiency and system's total cost rate. Since the performance of the system is affected by the working fluid, three zeotropic mixtures are compared with R123. The parametric study shows that high pressure (HP) and low pressure (LP) evaporator temperature, current density, and PEM operating pressure significantly affect the total cost rate and the second law efficiency. The results indicate that Ipentane-cis Butane has better efficiency among the selected zeotropic mixtures. Furthermore, the genetic algorithm multi-objective optimization is applied to determine the optimal design parameters of the system in a scatter distribution schematic. Finally, the normalized Pareto frontier of Ipentane-cis Butane is given and the related best point of working as a higher exergy efficiency and lower cost rate are specified. Eventually, it is concluded that the integration of STORC with primary PEM fuel cell improves overall exergy efficiency by 1.9%. The total cost rate for optimum point can be in a range of 1.36–14.94 ($/h), depending on the hydrogen production process.  相似文献   

5.
This paper deals with energy, exergy, economic, and environmental (4E) analysis of two new combined systems for simultaneous power and hydrogen production. The combined systems are integrated from a city gate station (CGS) system, a Rankine cycle (RC), an absorption power cycle (APC), and a proton exchange membrane (PEM) electrolyzer. Since the pressure of natural gas (NG) in transmission pipeline is high, this pressure is reduced at CGS to a lower pressure. However, this NG has also ample potential to be recovered for multiple productions, too. In the proposed systems, the outlet energy of NG is used for power and hydrogen production by employing RC/APC and PEM electrolyzer. The power sub-cycles are driven by waste heat of CGS, while PEM electrolyzer is driven by this waste heat along with a portion of CGS-Turbine output power. A comprehensive thermodynamic modeling and parametric study of the proposed combined systems are conducted from the 4E analysis viewpoint. The results of two proposed systems are compared with each other, considering a fixed value of 1 MW for RC- and APC-Turbines power. Under the same external conditions and using steam as working fluid of RC, the thermal efficiency of the combined CGS/PEM-RC and -APC systems are obtained 32.9% and 33.6%, respectively. The overall exergy efficiency of the combined CGS/PEM-RC and -APC systems are also calculated by 47.9% and 48.9%, respectively. Moreover, the total sum unit cost of product (SUCP) and CO2 emission penalty cost rate are obtained 36.9 $/GJ and 0.033 $/yr for the combined CGS/PEM-RC and 36 $/GJ and 0.211 $/yr for the combined CGS/PEM-APC systems, respectively. The results of exergy analysis also revealed that the vapor generator (in both systems) has the main contribution in the overall exergy destruction.  相似文献   

6.
The present study aimed to investigate a multi-generation energy system for the production of hydrogen, freshwater, electricity, cooling, heating, and hot water. Steam Rankine cycle (SRC), organic Rankine cycle (ORC), absorption chiller, Parabolic trough collectors (PTCs), geothermal well, proton exchange membrane (PEM) electrolyzer, and reverse osmosis (RO) desalination are the main subsystems of the cycle. The amount of exergy destruction is calculated for each component after modeling and thermodynamic analysis. The PTCs, absorption chiller, and PEM electrolyzer had the highest exergy destruction, respectively. According to meteorological data, the system was annually and hourly tested for Dezful City. For instance, it had a production capacity of 13.25 kg/day of hydrogen and 147.42 m3/day of freshwater on 17th September. Five design parameters are considered for multi-objective optimization after investigating objective functions, including cost rate and exergy efficiency. Using a Group method of data handling (GMDH), a mathematical relation is obtained between the input and output of the system. Next, a multi-objective optimization algorithm, a non-dominated sorting genetic algorithm (NSGA-II), was used to optimize the relations. A Pareto frontier with a set of optimal points is obtained after the optimization. In the Pareto frontier, the best point is selected by the decision criterion of TOPSIS. At the TOPSIS point, the exergy efficiency is 31.66%, and the total unit cost rate is 21.9 $/GJ.  相似文献   

7.
The aim of this study is to exploit the waste heat of a biomass-based solid oxide fuel cell (SOFC)–model (a)–in a gas turbine (GT) to enhance the power generation/exergy efficiency (model (b)). Moreover, surplus power which is generated by the GT is transferred to a proton exchange membrane electrolyzer (PEME) for hydrogen production (model (c)). Parametric study is performed to investigate the influence of the effective parameters on performance and economic indicators. Eventually, considering exergy efficiency and total product cost as the objective functions, the proposed models are optimized by multi-objective optimization method based on genetic algorithm. Accordingly, the optimum solution points are gathered as Pareto frontiers and subsequently favorable solution points are ascertained from exergy/economic standpoints. Results of parametric study indicate that model (b) is the best model as it has higher exergy efficiency and lower total product cost. Moreover, model (c) may be a more suitable model compared to the model (a) because of higher exergy efficiency and capability of hydrogen production. The results further show that, at the best final solution point, the exergy efficiency and total product cost of the model (b) would be 33.22% and 19.01 $/GJ, respectively. Corresponding values of exergy efficiency and total product cost of the model (c) are 32.3% and 20.1 $/GJ. Moreover, the rate of hydrogen production of the model (c) is 8.393 kg/day, at the best solution point. Overall, the integration methods are promising techniques for increasing exergy efficiency, reducing total product cost and also for hydrogen production.  相似文献   

8.
Based on a high temperature proton exchange membrane fuel cell (HT-PEMFC), a cogeneration system is proposed to produce heat and power. The system includes a coke oven gas steam reformer, a water gas shift reactor, and an afterburner. The system is analyzed in detail considering the energy, exergy and economic viewpoints. The analyses reveal the importance of HT-PEMFC in the system and according to the results, 9.03 kW power is generated with energy and exergy efficiencies of 88.2% and 26.2%, respectively and the total product unit cost is calculated as 91.8 $/GJ. Through a parametric study the effects on system performance are studied of such variables as the current density, fuel cell and reformer operating temperatures, and cathode stoichiometric ratio. It is found that an increase in the fuel cell temperature and/or a decrease in the reformer temperature enhance the exergy efficiency. The exergy efficiency is also maximized at the cathode stoichiometric ratio of 2.4. By performing a two-objective optimization using genetic algorithm, the best operating point is determined at which the exergy efficiency is (32.86%) and the total product unit cost is (78.68 $/GJ).  相似文献   

9.
The main purpose of the current research work is to suggest a novel integrated multi-generation energy system and scrutinize 4E evaluation. This system consists of a solid oxide fuel cell, a PEM electrolyzer for hydrogen production, and an ejector-based absorption chiller for the coefficient of performance improvement. All parts of this system are verified with existing reports and papers. Effect of fuel cell current density, SOFC fuel cell temperature, absorption chiller evaporator temperature, and condenser temperature, and outlet turbine pressure has been investigated and reported. The effect of mentioned parameters on the exergy and cost rate has been considered. Data illustrate that the maximum exergy destruction rate belongs to the SOFC contributing 60% of the total exergy destruction rate of the system. Under the given condition of the system, the net produced power is about 200 kW with an exergy efficiency of 30.2% and thermal efficiency of 60.4%. At the considered condition the total cost rate of the system is estimated about 22.29 $/hr. The results of the present work provide a scientific base for designing poly-generation systems with high efficiency and reasonable cost rate.  相似文献   

10.
Due to the environmental concerns caused by fossil fuels, renewable energy systems came into consideration. In this study, a renewable hybrid system based on ocean thermal, solar and wind energy sources were designed for power generation and hydrogen production. To analyze the system, a techno-economic model was exerted in order to calculate the exergy efficiency as well as the cost rate and the hydrogen production. The main parameters that affect the system performance were identified, and the impact of each parameter on the main outputs of the system was analyzed as well. The thermo-economic analysis showed that the most effective parameters on the exergy efficiency and total cost rate are the wind speed and solar collector area, respectively. To reach the optimum performance of the system, multi-objective optimization, by using genetic algorithm, was applied. The optimization was divided into two separate case studies; in case A, the cost rate and the exergy efficiency were considered as two objective functions; and in case B, the cost rate and the hydrogen production were assigned as two other objective functions. The optimization results of the case A showed that for the total cost rate of 30.5 $/h, the exergy efficiency could achieve 35.57%. While, the optimization of the case B showed that for the total cost rate of 28.06 $/h, the hydrogen production rate could reach 5.104 kg/h. Furthermore, after optimizing, an improvement in exergy efficiency was obtained, approximately 19%.  相似文献   

11.
In this study, a novel multi-generation system is proposed by integrating a solid oxide fuel cell (SOFC)-gas turbine (GT) with multi-effect desalination (MED), organic flash cycle (OFC) and polymer electrolyte membrane electrolyzer (PEME) for simultaneous production of electricity, fresh water and hydrogen. A comprehensive exergoeconomic analysis and optimization are conducted to find the best design parameters considering exergy efficiency and total unit cost of products as objective functions. The results show that the exergy efficiency and the total unit cost of products in the optimal condition are 59.4% and 23.6 $/GJ, respectively, which offers an increase of 2% compared to exergy efficiency of SOFC-GT system. Moreover, the system is capable of producing 2.5 MW of electricity by the SOFC-GT system, 5.6 m3/h of fresh water by MED unit, and 1.8 kg/h of hydrogen by the PEME. The associated cost for producing electricity, fresh water and hydrogen are 3.4 cent/kWh, 37.8 cent/m3, and 1.7 $/kg, respectively. A comparison between the results of the proposed system and those reported in other related papers are presented. The diagram of the exergy flow is also plotted for the exact determination of the exergy flow rate in each component, and also, location and value of exergy destruction. Finally, the capability of the proposed system for a case study of Iran is examined.  相似文献   

12.
The study presented here concerns a comprehensive investigation on exergoeconomic analysis and optimization of an integrated system for photoelectrochemical hydrogen and electrochemical ammonia production. The present integrated system consists of a solar concentrator, spectrum-splitting mirrors, a photoelectrochemical hydrogen production reactor, a photovoltaic module, an electrochemical ammonia production reactor and support mechanisms. Detailed thermodynamic and exergoeconomic analyses are initially conducted to determine the performance of the integrated system namely; efficiency and total cost rate. The obtained performance parameters are then optimized to yield the minimum cost rate and maximum efficiency under given constraints of the experimental system. The highest capital cost rates are observed in the photoelectrochemical hydrogen and electrochemical ammonia production reactors because of high procurement costs and electricity inputs. The optimized values for exergy efficiency of the integrated system range from 5% to 9.6%. The photovoltaic and photoelectrochemical cell areas and solar light illumination mainly affect the overall system efficiencies. The optimum efficiencies are found to be 8.7% and 5% for the multi-objective optimization of hydrogen production and integrated ammonia production system, respectively. When the exergy efficiency of the integrated system is maximized and the total cost rate is minimized at the same time, the total cost rate of the system is calculated to be about 0.2 $/h. The cost sensitivity analysis results of the present study show that the total cost rate of the system is mostly affected by the interest rate and lifetime of the system.  相似文献   

13.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.  相似文献   

14.
A techno-economic assessment of hydrogen production from waste heat using a proton exchange membrane (PEM) electrolyzer and solid oxide electrolyzer cell (SOEC) integrated separately with the Rankine cycle via two different hybrid systems is investigated. The two systems run via three available cement waste heats of temperatures 360 °C, 432 °C, and 780 °C with the same energy input. The waste heat is used to run the Rankine cycle for the power production required for the PEM electrolyzer system, while in the case of SOEC, a portion of waste heat energy is used to supply the electrolyzer with the necessary steam. Firstly, the best parameters; Rankine working fluid for the two systems and inlet water flow rate and bleeding ratio for the SOEC system are selected. Then, the performance of the two systems (Rankine efficiency, total system efficiency, hydrogen production rate, and economic and CO2 reduction) is investigated and compared. The results reveal that the two systems' performance is higher in the case of steam Rankine than organic, while a bleeding ratio of 1% is the best condition for the SOEC system. Rankine output power, total system efficiency, and hydrogen production rate rose with increasing waste heat temperature having the same energy. SOEC system produces higher hydrogen production and efficiency than the PEM system for all input waste heat conditions. SOEC can produce 36.9 kg/h of hydrogen with a total system efficiency of 23.8% at 780 °C compared with 27.4 kg/h and 14.45%, respectively, for the PEM system. The minimum hydrogen production cost of SOEC and PEM systems is 0.88 $/kg and 1.55 $/kg, respectively. The introduced systems reduce CO2 emissions annually by about 3077 tons.  相似文献   

15.
A solar transcritical CO2 power cycle for hydrogen production is studied in this paper. Liquefied Natural Gas (LNG) is utilized to condense the CO2. An exergy analysis of the whole process is performed to evaluate the effects of the key parameters, including the boiler inlet temperature, the turbine inlet temperature, the turbine inlet pressure and the condensation temperature, on the system power outputs and to guide the exergy efficiency improvement. In addition, parameter optimization is conducted via Particle Swarm Optimization to maximize the exergy efficiency of hydrogen production. The exergy analysis indicates that both the solar and LNG equally provide exergy to the CO2 power system. The largest amount of exergy losses occurs in the solar collector and the condenser due to the great temperature differences during the heat transfer process. The exergy loss in condenser could be greatly reduced by increasing the LNG temperature at the inlet of the condenser. There exists an optimum turbine inlet pressure for achieving the maximum exergy efficiency. With the optimized turbine inlet pressure and other parameters, the system is able to provide 11.52 kW of cold exergy and 2.1 L/s of hydrogen. And the exergy efficiency of hydrogen production could reach 12.38%.  相似文献   

16.
An improved very high temperature gas-cooled reactor (VHTR) and copper-chlorine (Cu–Cl) cycle-based nuclear hydrogen production system is proposed and investigated in this paper, in order to reveal the unknown thermo-economic characteristics of the system under variable operating conditions. Energy, exergy and economic analysis method and particle swarm optimization algorithm are used to model and optimize the system, respectively. Parametric analysis of the effects of several key operating parameters on the system performance is conducted, and energy loss, exergy loss, and investment cost distributions of the system are discussed under three typical production modes. Results show that increasing the reactor subsystem pressure ratio can enhance the system's thermo-economic performance, and the total efficiencies and cost of producing compressed hydrogen from nuclear energy are respectively lower and higher than that of generating electricity. When the system operates at the maximum hydrogen production rate of 403.1 mol/s, the system's net electrical power output, thermal efficiency, exergy efficiency, and specific energy cost are found to be 38.77 MW, 39.3%, 41.26%, and 0.0731 $/kW·h, respectively. And when the system's hydrogen production load equals to 0, these values are respectively calculated to be 177.25 MW, 50.64%, 53.29%, and 0.0268 $/kW·h. In addition, more than 90% of the system's total energy losses are caused by condenser and Cu–Cl cycle, and about 50–60% of the system's total exergy destructions occur in VHTR. About 60% and 30% of the system's specific energy cost are respectively caused by the equipment investment and the system operation & maintenance, and the investment costs of VHTR and Cu–Cl plant are the system's main capital investment sources.  相似文献   

17.
In recent years, growing attention has been given to new alternative energy sources and exergy analysis since fossil fuels cause emissions that have some negative impacts on earth such as global warming, greenhouse effect etc. New power generation systems have been developed in order to reduce or eliminate these impacts as possible. So that, new alternative energy systems have been taken place instead of fossil fuel based systems with nearly zero emission levels. One of them is solid polymer electrolyte or proton exchange membrane (PEM) fuel cell. Although it has significant advantages, there are some disadvantages such as cost, and hydrogen is not a fuel that can be easily obtained. For these reasons, efficiency of a PEM fuel cell has a great significance. Energy efficiency of a system is the most important parameter for utilization. But, energy analysis does not always show the capacity to do work potential of energy of a system. Exergy analysis must be investigated for a system in order to see available work of the system. Because of disadvantages of the PEM fuel cell, exergy analysis has quite importance. In this paper PEM fuel cell and exergy analysis of PEM fuel cell are combined and investigated. A detailed review of the past and recent research activities has been documented. The review focuses on exergy analysis of both PEM fuel cells and PEM based combined heat and power (CHP) systems at different operating parameters. It is concluded that there are a lot of parameters which effects the exergy efficiencies of systems.  相似文献   

18.
In this research paper, comprehensive thermodynamic modeling of an integrated energy system consisting of a multi-effect desalination system, geothermal energy system, and hydrogen production unit is considered and the system performance is investigated. The system's primary fuel is a geothermal two-phase flow. The system consists of a single flash steam-based power system, ORC, double effect water–lithium bromide absorption cooling system, PEM electrolyzer, and MED with six effects. The effect of numerous design parameters such as geothermal temperature and pressure on the net power of steam turbine and ORC cycle, the cooling capacity of an absorption chiller, the amount of produced hydrogen in PEM electrolyzer, the mass flow rate of distillate water from MED and the total cost rate of the system are studied. The simulation is carried out by both EES and Matlab software. The results indicate the key role of geothermal temperature and show that both total exergy efficiency and total cost rate of the system elevate with increasing geothermal temperature. Also, the impact of changing absorption chiller parameters like evaporator and absorber temperatures on the COP and GOR of the system is investigated. Since some of these parameters have various effects on cost and efficiency as objective functions, a multi-objective optimization is applied based on a Genetic algorithm for this system and a Pareto-Frontier diagram is presented. The results show that geothermal main temperature has a significant effect on both system exergy efficiency and cost of the system. An increase in this temperature from 260 C to 300 C can increase the exergy efficiency of the system for an average of 12% at various working pressure and also increase the cost of the system by 13%.  相似文献   

19.
Hybridized engines have become the focus of research nowadays in order to update the existing engines in different transportation sectors. This paper presents a hybridized aircraft engine consisting of a molten carbonate fuel cell system and a commercial turbofan system. The MCFC units are connected to a steam reforming and a water gas shift system. Also, five clean fuels are selected, such as dimethyl ether, hydrogen, ethanol, methane, and methanol, which are combined with different mass ratios to form five different fuel blends. The hybridized aircraft is investigated using three approaches: exergy analysis, exergoeconomic analysis, and exergoenvironmental analysis. It is found that the proposed engine has an average exergetic efficiency of 88% and an average exergy destruction ratio of 12%. The specific exergetic cost of electricity of the engine has an average value of 710 $/GJ for the high-pressure turbine and 230$/GJ for the intermediate and low-pressure turbines, as well as 50 $/GJ for the MCFC. The average specific exergoenvironmental impact of electricity is 14 mPt/MJ for turbines and 4 mPt/MJ for the MCFC. In addition, a blend of ethanol and hydrogen appears to be a viable option economically and environmentally.  相似文献   

20.
In this paper, the thermodynamic study of a combined geothermal power-based hydrogen generation and liquefaction system is investigated for performance assessment. Because hydrogen is the energy of future, the purpose of this study is to produce hydrogen in a clear way. The results of study can be helpful for decision makers in terms of the integrated system efficiency. The presented integrated hydrogen production and liquefaction system consists of a combined geothermal power system, a PEM electrolyzer, and a hydrogen liquefaction and storage system. The exergy destruction rates, exergy destruction ratios and exergetic performance values of presented integrated system and its subsystems are determined by using the balance equations for mass, energy, entropy, energy and exergy and evaluated their performances by means of energetic and exergetic efficiencies. In this regard, the impact of some design parameters and operating conditions on the hydrogen production and liquefaction and its exergy destruction rates and exergetic performances are investigated parametrically. According to these parametric analysis results, the most influential parameter affecting system exergy efficiency is found to be geothermal source temperature in such a way that as geothermal fluid temperature increases from 130 °C to 200 °C which results in an increase of exergy efficiency from 38% to 64%. Results also show that, PEM electrolyzer temperature is more effective than reference temperature. As PEM electrolyzer temperature increases from 60 °C to 85 °C, the hydrogen production efficiency increases from nearly 39% to 44%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号