首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and development of natural gas transmission pipeline networks are multidisciplinary problems that require various engineering knowledge. In this problem, the type, location, and installation schedule of major physical components of a network including pipelines and compressor stations are decided upon over a planning horizon with least cost goal and subject to network constraints. Practically, this problem has been viewed as a conceptual design case and not as an optimization problem that tries to select the best design option among a set of possible solutions. Consequently, conceptual design approaches are usually suboptimal and work only for short-run development planning. We propose an integrated nonlinear optimization model for this problem. This model provides the best development plans for an existing network over a long-run planning horizon with least discounted operating and capital costs. A heuristic random search optimization method is also developed to solve the model. We show the application of the model through a simple case study and discuss how non-economic objectives may also be incorporated into model.  相似文献   

2.
This paper focuses on non-isothermal transient flow in mixed hydrogen–natural gas pipelines. The effect of hydrogen injection into natural gas pipelines has been investigated in particular the pressure and temperature conditions, Joule–Thomson effect, linepack and energy consumption of the compressor station. The gas flow is described by a set of partial differential equations resulting from the conservation of mass, momentum and energy. Real gas effects are determined by the predictive Soave–Redlich–Kwong group contribution method. The Yamal-Europe gas pipeline on Polish territory has been selected as case study.  相似文献   

3.
长距离输气管线压气站负荷优化调度   总被引:1,自引:0,他引:1  
介绍了建立优化调度所需的燃气轮机、离心压缩机和输气管线模型的方法。提出了对于长距离输气管线增压站负荷调度的分级优化方法:首先根据输气量和“最高压力原则”确定全管线压力的最佳分配,使运行的增压站数目最少;然后根据各站的压比优化分配各增压站内压缩机组间的负荷,使总燃料消耗量最低。计算结果证明分级优化方法是有效的。  相似文献   

4.
By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility.  相似文献   

5.
Blending hydrogen into existing natural gas pipelines has been proposed as a means of increasing the output of renewable energy systems such as large wind farms. X80 pipeline steel is commonly used for transporting natural gas and such steel is subjected to concurrent hydrogen invasion with mechanical loading while being exposed to hydrogen containing environments directly, resulting in hydrogen embrittlement (HE). In accordance with American Society for Testing and Materials (ASTM) standards, the mechanical properties of X80 pipeline steel have been tested in natural gas/hydrogen mixtures with 0, 5.0, 10.0, 20.0 and 50.0vol% hydrogen at the pressure of 12 MPa. Results indicate that X80 pipeline steel is susceptible to hydrogen-induced embrittlement in natural gas/hydrogen mixtures and the HE susceptibility increases with the hydrogen partial pressure. Additionally, the HE susceptibility depends on the textured microstructure caused by hot rolling, especially for the notch specimen. The design calculation by the measured fatigue data reveals that the fatigue life of the X80 steel pipeline is dramatically degraded by the added hydrogen.  相似文献   

6.
The paper develops a statistical model for optimizing the Hydrogen-injected Natural gas (H-NG) high-pressure pipeline network. Gas hydrodynamic principles are utilized to construct the pipeline and compressor station model. The model developed is implemented on a pipeline grid that is supposed to carry Hydrogen as an energy carrier in a natural gas-carrying pipeline. The paper aims to optimize different objectives using ant colony optimization (ACO). The first objective includes a single objective optimization problem that evaluates the maximum permissible hydrogen amounts blended with natural gas (NG) for a set of pipeline constraints. We also evaluated the variations in operational variables on injecting Hydrogen into the natural gas pipeline networks at varying fractions. The study further develops a multi-objective optimization model that includes bi-objective and tri-objective problems and is optimized using ACO. Traditional studies have focused on single-objective optimization with minimal bi-objective issues. In addition, none of the earlier research has shown the effect of introducing Hydrogen to the NG network using tri-objective function evaluations. The bi-objective and tri-objective functions help evaluate the effect of injecting Hydrogen on different operational parameters. The study further attempts to fill the gap by detailing the modelling equations implemented through a bi-objective and tri-objective function for the H-NG pipeline network and optimized through ACO. Pareto fronts that show the tradeoff between the different objectives for the multi-objective problem have been generated. The primary objective of the bi-objective and tri-objective optimization problems is maximizing hydrogen mole percent in natural gas. The other objective chosen is minimizing compressor fuel consumption and maximizing delivery pressure, throughput, and power delivered at the delivery station. The findings will serve as a roadmap for pipeline operators interested in repurposing natural gas pipeline networks to transport hydrogen and natural gas blend (H-NG) and seeking to reduce carbon intensity per unit of energy-delivered fuel.  相似文献   

7.
Hydrogen fuel has the potential to mitigate the negative effects of greenhouse gases and climate change by neutralizing carbon emissions. Transporting large volume of hydrogen through pipelines needs hydrogen-specific infrastructure such as hydrogen pipelines and compressors, which can become an economic barrier. Thus, the idea of blending hydrogen into existing natural gas pipelines arises as a potential alternative for transporting hydrogen economically by using existing natural gas grids. However, there are several potential issues that must be considered when blending hydrogen into natural gas pipelines. Hydrogen has different physical and chemical properties from natural gas, including a smaller size and lighter weight, which require higher operating pressures to deliver the same amount of energy as natural gas. Additionally, hydrogen's small molecular size and lower ignition energy make it more likely to permeate through pipeline materials and seals, leading to degradation, and its wider flammability limits make it a safety hazard when leaks occur. In this study, we investigate these potential issues through simulation and technical surveys. We develop a gas hydraulic model to simulate the physical characteristics of a transmission and a distribution pipeline. This model is used throughout the study to visualize the potential impacts of switching from natural gas to hydrogen, and to investigate potential problems and solutions. Furthermore, we develop a Real-Time Transient Model (RTTM) to address the compatibility of current computational pipeline monitoring (CPM) based leak detection methods with blended hydrogen. Finally, we suggest the optimal hydrogen concentration for this model, and investigate the amount of carbon reduction that could be achieved, while considering the energy needs of the system.  相似文献   

8.
We are reporting in this study the hydrogen permeation in the lattice structure of a steel pipeline designed for natural gas transportation by investigating the influence of blending gaseous hydrogen into natural gas flow and resulted internal pressure values on the structural integrity of cracked pipes. The presence of cracks may provoke pipeline failure and hydrogen leakage. The auto-ignition of hydrogen leaks, although been small, leads to a flame difficult to be seen. The latter makes such a phenomenon extremely dangerous as explosions became very likely to happen. In this paper, a reliable method is presented that can be used to predict the acceptable defect in order to reduce risks caused by pipe failure due to hydrogen embrittlement. The presented model takes into account the synergistic effects of transient gas flow conditions in pipelines and hydrogen embrittlement of steel material due to pressurized hydrogen gas permeation. It is found that blending hydrogen gas into natural gas pipelines increases the internal load on the pipeline walls due to overpressure values that may be reached in a transient gas flow regime. Also, the interaction between transient hydrogen gas flow and embrittlement of API 5L X52 steel pipeline was investigated using Failure Assessment Diagram (FAD) and the results have shown that transient flow enhances pipeline failure due to hydrogen permeation. It was shown that hydrogen embrittlement of steel pipelines in contact with the hydrogen environment, together with the transient gas flow and significantly increased transient pressure values, also increases the probability of failure of a cracked pipeline. Such a situation threatens the integrity of high stress pipelines, especially under the real working conditions of hydrogen gas transportation.  相似文献   

9.
The desire for sustainable development in various countries has increased the use of hydrogen energy. Considering cost and time savings, the introduction of hydrogen into existing natural gas pipelines is an excellent option, and the failure consequences of hydrogen blending in natural gas pipelines should be considered. In this study, a solid flame model is used to calculate the thermal radiation intensity of a hydrogen-blended natural gas jet fire. A method is proposed to modify the calculation of the view factor in the near field, and parameters such as the specific heat capacity and calorific value of pure gas are replaced by the parameters of the mixed gas. The data of the Thornton and modified models are compared with the experimental results, and the modified model result is found to be more accurate. Using the modified model, the variations in different hydrogen blending ratios, internal pressures, and pipe diameters with the safe separation distance of the thermal radiation intensity in a pipeline accident are investigated, and the relationships between them are analyzed.  相似文献   

10.
Hydrogen is seen as an important energy carrier for the future which offers carbon free emissions. At present it is mainly used in refueling hydrogen fuel cell cars. However, it can also be used together with natural gas in existing gas fired equipment with the benefit of lower carbon emissions. This can be achieved by introducing hydrogen into existing natural gas pipelines. These pipelines are designed, constructed and operated to safely transport natural gas, which is mostly methane. Because hydrogen has significantly different physical and chemical properties than natural gas, any addition of hydrogen my adversely affect the integrity of the pipeline network, increasing the likelihood and consequences of an accidental leak. Since it increases the likelihood and consequences of an accidental leak, it increases the risk of explosion. In order to address various safety issues related to addition of hydrogen in to a natural gas pipeline a EU project NATURALHY was introduced. A major objective of the NATURALHY project was to identify how much hydrogen could be introduced into the natural gas pipeline network. Such that it does not adversely impact the safety of the pipeline network and significantly increase the risk to the public. This paper reports experimental work conducted to measure the explosion overpressure generated by ignition of hydrogen-methane-air mixture in a highly congested region consisting of interconnected pipes. The composition of the methane/hydrogen mixture used was varied from 0% hydrogen (100% methane) to 100% hydrogen (0% methane) to understand its effect on generated explosion overpressure. It was observed that the maximum overpressures generated by methane-hydrogen mixtures with 25% (by volume) or less hydrogen content are not likely to be significantly greater than those generated by methane alone. Therefore, it can be concluded that the addition of less than 25% by volume of hydrogen into pipeline networks would not significantly increase the risk of explosion.  相似文献   

11.
Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines.  相似文献   

12.
With the transformation of energy structure, the proportion of renewable energy in the power grid continues to increase. However, the power grid's capacity to absorb renewable is limited. In view of this, converting the excess renewable energy into hydrogen and injecting it into natural gas network for transportation can not only increase the absorption capacity of renewable energy but also reduce the transportation cost of hydrogen. While this can lead to the problem that hydrogen injection will make the dynamic characteristics of the pipeline more complicated, and hydrogen embrittlement of pipeline may occur. It is of great significance to simulate the dynamic characteristics of gas pipeline with hydrogen injection, especially the hydrogen mixture ratio. In this paper, the cell segmentation method is used to solve each natural gas pipeline model, the gas components are recalculated in each cell and the parameters of partial differential equation are updated. Additionally, the dynamic simulation model of natural gas network with hydrogen injections is established. Simulation results show that for a single pipeline, when the inlet hydrogen ratio changes, whether or not hydrogen injection has little influence on the pressure and flow. The propagation speed of hydrogen concentration is far less than that of the pressure and flow rate, and it takes about 1.2 × 105 s for the 100 km pipeline hydrogen ratio to reach the steady state again.  相似文献   

13.
The uncertain role of the natural gas infrastructure in the decarbonized energy system and the limitations of hydrogen blending raise the question of whether natural gas pipelines can be economically utilized for the transport of hydrogen. To investigate this question, this study derives cost functions for the selected pipeline reassignment methods. By applying geospatial hydrogen supply chain modeling, the technical and economic potential of natural gas pipeline reassignment during a hydrogen market introduction is assessed.The results of this study show a technically viable potential of more than 80% of the analyzed representative German pipeline network. By comparing the derived pipeline cost functions, it could be derived that pipeline reassignment can reduce the hydrogen transmission costs by more than 60%. Finally, a countrywide analysis of pipeline availability constraints for the year 2030 shows a cost reduction of the transmission system by 30% in comparison to a newly built hydrogen pipeline system.  相似文献   

14.
15.
Pipeline is a major way for natural gas transportation. Accidental gas release from a pipeline might lead to great economic losses and casualties. Therefore, it is important to investigate the dispersion characteristics of natural gas release from pipelines. Most previous studies on accidental natural gas release from pipelines mainly focused on bare pipelines and adopted simplified 2D models. This paper first established dispersion models of natural gas release from buried pipelines with high and low pressure, respectively. The numerical methods were validated by Trial 26 of the Thorney Island field experiment and the dispersion model was found to be reasonable and reliable. Then, comparative study between 2D and 3D dispersion model of released natural gas was carried out, which proved that 3D model had superiority upon the 2D model. Then the 3D model was employed to simulate dispersion process of released natural gas by changing pipeline pressure, orifice diameter, wind speed, and soil properties. Finally, the effect of leakage conditions on consequence distance was analyzed. The numerical results could provide technical supports for the design of emergency disposal equipments and urgent pipeline repairs.  相似文献   

16.
In the present investigation, mathematical models have been developed to optimize hydrogen distribution in the refinery. Five models, Model-0, Model-1, Model-2, Model-3 and Model-4, have been formulated to determine the optimal hydrogen network. Amongst these, Model-0 and Model-1 are NLP networks, whereas the remaining three are MINLP networks. The NLP models are improved gradually to develop MINLP models which incorporate new compressor and PSA. The model considers pressure constraints, source flow balance, sink flow balance, compressor flow balance, sink purity constraint, operating cost, capital cost associated with new equipment, payback period and export cost. Amongst five models, Model-4 is predicted as optimal network which is MINLP model incorporating new compressor and PSA. It predicts reduction in hydrogen by 21.74% and annual profit of $ 16.57 million. The present work selects the optimal type of new compressor based on different capital cost functions. Further, the reliability of the present work is checked through comparison of its results with published models.  相似文献   

17.
Long-distance road-freight transport emits a large share of Germany's greenhouse gas (GHG) emissions. A potential solution for reducing GHG emissions in this sector is to use green hydrogen in fuel cell electric vehicles (FC-HDV) and establish an accompanying hydrogen refueling station (HRS) network. In this paper, we apply an existing refueling network design model to a HDV-HRS network for Germany until 2050 based on German traffic data for heavy-duty trucks and estimate its costs. Comparing different fuel supply scenarios (pipeline vs. on-site), The on-site scenario results show a network consisting of 137 stations at a cost of 8.38 billion € per year in 2050 (0.40 € per vehicle km), while the centralized scenario with the same amount of stations shows a cheaper cost with 7.25 billion euros per year (0.35 € per vehicle km). The hydrogen cost (LCOH) varies from 5.59 €/kg (pipeline) to 6.47 €/kg (on-site) in 2050.  相似文献   

18.
Buried pipelines are one method of conservation transfer for widely used gases such as natural gas and hydrogen. The safety of these pipelines is of great importance because of the potential leakage risks posed by the flammable gas and the special properties of the hydrogen mixture. Estimating the leakage behavior and quantifying the diffusion range outside the pipeline are important but challenging goals due to the hydrogen mixture and presence of soil. This study provides essential information about the diffusion behavior and concentration distribution of underground hydrogen and natural gas mixture leakages. Therefore, a large-scale experimental system was developed to simulate high-pressure leaks of hydrogen mixture natural gas from small holes in three different directions from a pipeline buried in soil. The diffusion of hydrogen-doped natural gas in soil was experimentally measured under different conditions, such as different hydrogen mixture ratios, release pressures, and leakage directions. The experimental results verified the applicability of the gas leakage mass flow model, with an error of 6.85%. When a larger proportion of a single component was present in the hydrogen-doped natural gas, the leakage pressure showed a greater diffusion range. In addition, the diffusion range of hydrogen-doped natural gas in the leakage direction was larger at 3 o'clock than that at 12 o'clock. The hydrogen blend carried methane and diffused, which shortened the methane saturation time. Moreover, a quantitative relationship between the concentration of hydrogen-doped natural gas and the diffusion distance over which the hydrogen-doped natural gas reached the lower limit of the explosion was obtained by quantitative analysis of the experimental data.  相似文献   

19.
Natural gas pipeline cost data collected by the Oil and Gas Journal (O&GJ) [1] for interstate pipelines constructed from 1980 through 2017 were used to develop capital cost estimating equations that are a function of pipeline diameter, length, and U.S. region. Equations were developed for material, labor, miscellaneous, and right-of-way costs, the four cost components in the O&GJ data, for six different regions of the United States (U.S.). Each equation is a function of pipeline diameter and length.Adjustment mechanisms were then developed for converting the natural gas pipeline equations into equations for estimating the costs of hydrogen pipelines. These adjustments were based in part on an analysis completed by the National Institute for Standards and Technology (NIST) [2,3]. The results of this work were used to update cost models in the Hydrogen Delivery Scenario Analysis Model (HDSAM) [4], developed by Argonne National Laboratory for the U.S. Department of Energy's Hydrogen Program. Our analysis shows a wide range of pipeline cost across different U.S. regions, especially with respect to labor and right-of-way costs. The developed cost formulas for hydrogen pipelines are both important and timely as hydrogen is being considered as a zero-carbon energy carrier with the potential to decarbonize all energy sectors, and the cost of hydrogen transportation is essential for techno-economic analysis of its potential use in these sectors.  相似文献   

20.
Low temperature and high pressure line pipes are widely used in hydrogen storage, air separation plant, liquefied natural gas (LNG) transportation etc. The material properties of pipes at low temperature are different from those at room temperature. If the medium in the pipe is corrosive, it will cause the pipe wall thickness to decrease. However, the failure pressure of the corroded hydrogen storage pipeline at extremely low temperature is lacking of adequate understanding. In this paper, we provided a novel failure pressure equation of the mild steel line pipe with corrosion defects at extremely low temperature. Firstly, a mechanical model of the line pipe with corrosion defects is established. And then, an analytical solution of the mechanical model is obtained based on elastic theory. Next, a failure pressure equation of the corroded hydrogen storage pipeline at extremely low temperature is developed. In the end, the accuracy of the failure pressure equation is verified by comparing with finite element method (FEM). The results suggest that the calculated value of the failure pressure equation is consistent with that of FEM. This paper provides a theoretical basis for the safety assessment of low temperature hydrogen storage pipeline. The new equation presented in this paper can provide useful guidance for the design of low temperature and high pressure pipelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号