首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper deals with synthesis gas (syngas) for electrochemical generator produced in the gas generator with autothermal steam gasification of coal from Borodino deposits. Here, thermal balances of the battery of solid oxide fuel cells (SOFC) and boiler intended for producing the superheated water steam for a gas generator and for heating the cathode air have been compiled. On the base of these balances, the fractions of hydrogen and SOFC oxidized in anode as well as the electrical efficiency, the temperature in anode and the loss with flue gases and to the surrounding through the thermal insulation along with the fuel cell EMF have been calculated. Besides, the specific consumption of Borodino coal for producing electrical and thermal power has been determined.  相似文献   

2.
A new concept for soot removal from inside a syngas environment has been studied. Particulate emissions are retained in a soot trap downstream from a thermal partial oxidation (TPOX) reformer, while the syngas atmosphere itself is utilized as a gasification agent to achieve continuous and passive trap regeneration. This work analyses the performances of the loading and the regenerating phases of a wall flow soot trap in a syngas environment in an ad hoc developed test rig. A balance point between filtered and removed soot was actually reached at trap temperatures in the 800-1000 °C range with soot abatement efficiencies above 95 wt%. The particulate is obtained from a TPOX reactor operating in very rich fuel conditions, using methane as fuel. The final application of the reactor and trap assembly is a micro CHP system, based on an SOFC fed by a TPOX reformer. However, application to larger contexts (e.g. biomass gasification plants) can be envisaged.  相似文献   

3.
High efficiency reforming is a key parameter of high temperature stationary fuel cell systems. In this study, a planar heat exchanger steam reformer (PHESR) was integrated with a catalytic combustor in order that the unused energy of the anode off-gas is delivered for heating and reforming. The PHESR was designed to use the anode off-gas of the externally reformed SOFC system because it has an efficiency problem. In the PHESR reactor, the heat is transferred from the catalytic burner to the reformer that has the smallest gradient of temperature difference between the two reactors.  相似文献   

4.
《Journal of power sources》2001,92(1-2):17-25
A thermodynamic analysis of hydrogen production from ethanol has been carried out with respect to solid polymer fuel cell applications. Ethanol processors incorporating either a steam reformer or a partial oxidation reactor connected to water gas shift and CO oxidation reactors were considered and the effect of operating parameters on hydrogen yield has been examined. Employment of feeds with high H2O/EtOH ratio results in reduced energy efficiency of the system. When hydrogen, non-converted in the fuel cell, is used to supply heat in the steam reformer, the effective hydrogen yield is essentially independent of the temperature of the reformer and the water gas shift reactor. Optimal operating conditions of partial oxidation processors have been determined assuming an upper limit for the preheat temperature of the feed. Results are discussed along with other practical considerations in view of actual applications.  相似文献   

5.
The methane steam reforming reaction is an extremely high endothermic reaction that needs a high temperature heat source. Various fuel cell hybrid systems have been developed to improve the thermal efficiency of the entire system. This paper presents a low temperature steam reformer for those hybrid systems to maximize the utilization of energy from a low temperature waste heat source. In this study, the steam reformer has a shell and tube configuration that is divided into the following zones: the inlet heat exchanging zone, the reforming zone and the exit heat exchanging zone. Four different configurations for methane steam reformers are developed to examine the effect of heat transfer on the methane conversion performance of the low temperature steam reformer. The experimental results show that the overall heat transfer area is a critical parameter in achieving a high methane conversion rate. When the heat transfer area increases about 30%, the results showed elevated dry mole fractions of hydrogen about 3% with about 30 °C rise of reformer outlet temperature.  相似文献   

6.
The operation of solid oxide fuel cells on various fuels, such as natural gas, biogas and gases derived from biomass or coal gasification and distillate fuel reforming has been an active area of SOFC research in recent years. In this study, we develop a theoretical understanding and thermodynamic simulation capability for investigation of an integrated SOFC reformer system operating on various fuels. The theoretical understanding and simulation results suggest that significant thermal management challenges may result from the use of different types of fuels in the same integrated fuel cell reformer system. Syngas derived from coal is simulated according to specifications from high-temperature entrained bed coal gasifiers. Diesel syngas is approximated from data obtained in a previous NFCRC study of JP-8 and diesel operation of the integrated 25 kW SOFC reformer system. The syngas streams consist of mixtures of hydrogen, carbon monoxide, carbon dioxide, methane and nitrogen. Although the SOFC can tolerate a wide variety in fuel composition, the current analyses suggest that performance of integrated SOFC reformer systems may require significant operating condition changes and/or system design changes in order to operate well on this variety of fuels.  相似文献   

7.
Steam reforming performance in a coupled reactor that consists of a steam reformer and a catalytic combustor is experimentally investigated in this study. Endothermic steam reforming can occur through the absorption of heat from the catalytic combustion of the anode offgas in a heat-exchanging coupled reactor. The reaction characteristics were observed by varying parameters such as the inlet temperature of the catalytic combustor, the excess air ratio for the catalytic combustion, the fuel utilization rate in the fuel cells, and the steam-to-carbon ratio in the steam reformer. The reactor temperature and reformate composition were measured to analyze the performance of the reactor. The results show the potential applicability and design technologies of the coupled reactor for the fuel processing of high temperature fuel cells using an external reformer.  相似文献   

8.
In this paper, the first experimental investigations on a pre-commercial natural gas steam reformer have been presented. The fuel processor unit contains the elements as follows: desulfurizer, steam reformer reactor, CO shift converter, CO preferential oxidation (PROX) reactor, steam generator, burner and heat exchangers.The fuel processor produces 45 Nl/min of syngas in which the hydrogen concentration is about 75 vol.% and the other chemical species are nitrogen, carbon dioxide and methane. The CO concentration is below 1 ppmv, so that this reforming system is suitable for the integration with a PEM fuel cell stack.The experimental activity has been conducted in a test station, properly designed to measure the behaviour of the fuel processor. The laboratory test facility is equipped by a National Instruments Compact DAQ real-time data acquisition and control system running Labview™ software. Several measurement instruments and controlling devices have been installed. Furthermore, a gas chromatograph is used to measure the product gas composition during the tests.The aim of this work has been to analyze the behaviour of this pre-commercial steam reforming unit during its operation cycle in different operating conditions (full and partial loads) in order to study its integration with a PEM fuel cell for developing a high efficiency microcogeneration system for residential applications.  相似文献   

9.
10.
Three configurations of solid oxide fuel cell (SOFC) micro-combined heat and power (micro-CHP) systems are studied with a particular emphasis on the application for single-family detached dwellings. Biogas is considered to be the primary fuel for the systems studied. In each system, a different method is used for processing the biogas fuel to prevent carbon deposition over the anode of the cells used in the SOFC stack. The anode exit gas recirculation, steam reforming, and partial oxidation are the methods employed in systems I–III, respectively. The results predicted through computer simulation of these systems confirm that the net AC electrical efficiency of around 42.4%, 41.7% and 33.9% are attainable for systems I–III, respectively. Depending on the size, location and building type and design, all the systems studied are suitable to provide the domestic hot water and electric power demands for residential dwellings. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required for the SOFC stack to generate around 1 kW net AC electric power, the thermal-to-electric ratio (TER), the net AC electrical and CHP efficiencies, the biogas fuel consumption, and the excess air required for controlling the SOFC stack temperature is also studied through a detailed sensitivity analysis. The results point out that the cell design voltage is higher than the cell voltage at which the minimum number of cells is obtained for the SOFC stack.  相似文献   

11.
This paper presents an experimental study of a direct-flame type solid oxide fuel cell (DFFC). The operation principle of this system is based on the combination of a combustion flame with a solid oxide fuel cell (SOFC) in a simple, no-chamber setup. The flame front serves as fuel reformer located a few millimeters from the anode surface while at the same time providing the heat required for SOFC operation. Experiments were performed using 13-mm-diameter planar SOFCs with Ni-based anode, samaria-doped ceria electrolyte and cobaltite cathode. At the anode, a 45-mm-diameter flat-flame burner provided radially homogeneous methane/air, propane/air, and butane/air rich premixed flames. The cell performance reaches power densities of up to 120 mW cm−2, varying systematically with flame conditions. It shows a strong dependence on cell temperature. From thermodynamic calculations, both H2 and CO were identified as species that are available as fuel for the SOFC. The results demonstrate the potential of this system for fuel-flexible power generation using a simple setup.  相似文献   

12.
The possibility to exploit diluted bioethanol streams is discussed for hydrogen production by steam reforming. An integrated unit constituted by a steam reformer, a hydrogen purification section with high- and low-temperature water gas shift, a methanator reactor and a fuel cell were simulated to achieve residential size cogeneration of 5 kW electrical power + 5 kW thermal power as target output.Process simulation allowed to investigate the effect of the reformer temperature, of bioethanol concentration and of catalyst loading on the temperature and concentration profiles in the steam reformer. The net power output was also calculated on the basis of 27 different operating conditions.Pelectrical output ranging from 3.3 to 6.0 kW were obtained, whereas the total heat output Pthermal, total ranged from 3.9 to 7.2 kW. The highest overall energy output corresponded to Pelectrical = 4.8 kW, PThermal, FC = 3.1 kW, Pheat recovery = 4.1 kW, for a total 12 kW energy output. This was achieved by feeding a mixture with water/ethanol ratio = 11 (mol/mol), irrespectively of the catalyst mass, and setting the ref split temperature so to have an average temperature of 635 °C in the ESR reactor.  相似文献   

13.
Multi-energy complementary distributed energy system integrated with renewable energy is at the forefront of energy sustainable development and is an important way to achieve energy conservation and emission reduction. A comparative analysis of solid oxide fuel cell (SOFC)-micro gas turbine (MGT)-combined cooling, heating and power (CCHP) systems coupled with two solar methane steam reforming processes is presented in terms of energy, exergy, environmental and economic performances in this paper. The first is to couple with the traditional solar methane steam reforming process. Then the produced hydrogen-rich syngas is directly sent into the SOFC anode to produce electricity. The second is to couple with the medium-temperature solar methane membrane separation and reforming process. The produced pure hydrogen enters the SOFC anode to generate electricity, and the remaining small amount of fuel gas enters the afterburner to increase the exhaust gas enthalpy. Both systems transfer the low-grade solar energy to high-grade hydrogen, and then orderly release energy in the systems. The research results show that the solar thermochemical efficiency, energy efficiency and exergy efficiency of the second system reach 52.20%, 77.97% and 57.29%, respectively, 19.05%, 7.51% and 3.63% higher than those of the first system, respectively. Exergy analysis results indicate that both the solar heat collection process and the SOFC electrochemical process have larger exergy destruction. The levelized cost of products of the first system is about 0.0735$/h that is lower than that of the second system. And these two new systems have less environmental impact, with specific CO2 emissions of 236.98 g/kWh and 249.89 g/kWh, respectively.  相似文献   

14.
In this paper, an integrated process of steam biomass gasification and a solid oxide fuel cell (SOFC) is investigated energetically to evaluate both electrical and energy efficiencies. This system is conceptualized as a combined system, based on steam biomass gasification and with a high temperature, pressurized SOFC. The SOFC system uses hydrogen obtained from steam sawdust gasification. Due to the utilization of the hydrogen content of steam in the reforming and shift reaction stages, the system efficiencies reach appreciable levels. This study essentially investigates the utilization of steam biomass gasification derived hydrogen that was produced from an earlier work in a system combines gasifier and SOFC to perform multi-duties (power and heat). A thermodynamic model is developed to explore a combination of steam biomass gasification, which produces 70–75 g of hydrogen/kg of biomass to fuel a planar SOFC, and generate both heat and power. Furthermore, processes are emerged in the system to increase the hydrogen yield by further processing the rest of gasification products: carbon monoxide, methane, char and tar. The conceptualized scheme combines SOFC operates at 1000 K and 1.2 bar and gasifier scheme based on steam biomass gasification which operates close to the atmospheric pressure, a temperature range of 1023–1423 K and a steam-biomass ratio of 0.8 kmol/kmol. A parametric study is also performed to evaluate the effect of various parameters such as hydrogen yield, air flow rate etc. on the system performance. The results show that SOFC with an efficiency of 50.3% operates in a good fit with the steam biomass gasification module with an efficiency, based on hydrogen yield, of 55.3%, and the overall system then works efficiently with an electric efficiency of ∼82%.  相似文献   

15.
At present, the production of electric energy consumer remote from agro-based centralized networks is done using diesel-generator technology with limited service life of the engine and the extremely low efficiency in the use of expensive fuel. In this paper, is considered an innovative technology of combined production of electricity and heat using a preliminary conversion of diesel fuel in the synthesis gas and then serving it at high temperature electrochemical generator. Synthetic gas to operate the generator air conversion is made of an electrochemical engine diesel fuels in catalytic reactor-burner. On the basis of heat balances of the torch, battery power and boiler are calculated: battery electric efficiency SOFC, chemical efficiency burner, SOFC anode temperature, EMF Planar element, the proportion of hydrogen, oxidized anode SOFC, unit cost of diesel fuel for the production of electricity and thermal energy. Specific consumption of diesel fuel for the production of electrical energy 114 g/kWh (162 g. w. t./kWh), and thermal 31.7 kg/Gj (45.1 kg/GJ, w. t. 189 kg standard fuel/Gcal).  相似文献   

16.
Solid-oxide fuel cells (SOFCs) are particularly attractive since they offer clean and efficient decentralized electricity generation and can be incorporated into hybrid systems with CHP capabilities. However, small scale SOFC systems operated with hydrocarbon fuels require external reforming. A very promising reforming technology involves partial oxidation (POX) in an inert porous material (T-POX reformer). The present work provides extensive numerical simulation of a prototype T-POX reformer operating with methane. Computations are performed using a reactor network approach incorporating full detailed chemistry and results are successfully compared against experimentally determined hydrocarbon species data. Computational results are further used to identify the elementary kinetic pathways for hydrocarbon fuel partial oxidation, molecular growth and pollutant formation as well as to identify optimum reformer operating conditions.  相似文献   

17.
Methane reforming is the most important and economical process for hydrogen and syngas generation. In this work, the dynamic simulation of methane steam reforming in an industrial membrane reformer for synthesis gas production is developed. A novel deactivation model for commercial Ni-based catalysts is proposed and the monthly collected data from an existing reformer in a domestic methanol plant is used to optimize the model parameters. The plant data is also employed to check the model accuracy. It was observed that the membrane reformer could compensate for the catalyst deactivating effect.In order to assure the long membrane lifetime and decrease the unit price, the membrane reformer with 5 μm thick Pd on stainless steel supports is modeled at the temperature below the maximum operating temperature of Pd based membranes (around 600 °C). The dynamic modeling showed that the methane conversion of 76% could be achieved at a moderate temperature of 600 °C for an industrial membrane reformer. The cost-effective generation of syngas with an appropriate H2/CO ratio of 2.6 could be obtained by membrane reformer. This is while the conventional reformer exhibits a maximum conversation of 64 at 1200 °C challenging due to its high syngas ratio (3.7). On the other hand, the pure hydrogen from membrane reformer can supply part of the ammonia reactor feed in an adjacent ammonia plant.  相似文献   

18.
《Journal of power sources》2004,137(2):206-215
We evaluated the performance of system combining a solid oxide fuel cell (SOFC) stack and a polymer electrolyte fuel cell (PEFC) stack by a numerical simulation. We assume that tubular-type SOFCs are used in the SOFC stack. The electrical efficiency of the SOFC–PEFC system increases with increasing oxygen utilization rate in the SOFC stack. This is because the amount of exhaust heat of the SOFC stack used to raise the temperature of air supplied to it decreases as its oxygen utilization rate increases and because that used effectively as the reaction heat of the steam reforming reaction of methane in the stack reformer increases. The electrical efficiency of the SOFC–PEFC system at 190 kW ac is 59% (LHV), which is equal to that of the SOFC-gas turbine combined system at 1014 kW ac.  相似文献   

19.
This paper uses computational models to evaluate strategies for scaling electrochemical partial oxidation (EPOX) processes from the laboratory scale to practical application. In addition to producing electrical energy alone, solid-oxide fuel cells (SOFC) can be operated with hydrocarbon fuel streams to produce synthesis gas (H2 and CO) as well. SOFC systems are usually operated to consume most of the fuel and produce electricity. However, by operating with a hydrocarbon fuel at relatively high flow rates, the exhaust-gas composition can be predominantly syngas. In this case the steam (and CO2), produced from electrochemical and thermal reactions, reacts to reform the hydrocarbon fuel within the catalytic anode support structure. A practical limitation of electrochemical partial oxidation operation is the fact that carbon tends to deposit on Ni-based anode catalysts. The present paper explores the use of barrier layers to prevent carbon deposits. The results show that a tubular cell can be designed to deliver syngas and electricity using methane as the primary fuel.  相似文献   

20.
Design-point and part-load characteristics of a solid oxide fuel cell (SOFC) system, fuelled by methane and hydrogen, are investigated for its prospective use in the residential application. As a part of this activity, a detailed SOFC cell model is developed, evaluated and extended to a stack model. Models of all the required balance of plant components are also developed and are integrated to build a system model. Using this model, two system base cases for methane and hydrogen fuels are introduced. Cogeneration relevant performance figures are investigated for different system configurations and cell parameters i.e. fuel utilization, fuel flow rate, operation voltage and extent of internal fuel reforming. The results show high combined heat and power efficiencies for both cases, with higher thermal-to-electric ratio and lower electric efficiency for the hydrogen-fuelled cases. Performance improvements with radiation air pre-heaters and anode gas recycling are presented and the respective application limits discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号