首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen production from electrocatalytic water splitting is viewed as one of the most promising methods to generate the clean energy. In this work, we successfully prepared an electrode material by growing phosphorus-doped Ni3S2 (PNi3S2) on nickel foam substrate (NF) under hydrothermal conditions. The phosphorus-doping has an obvious effect on the morphology of Ni3S2 on the surface of the nickel foam, which probably results in more active sites, higher electrical conductivity and faster mass transfer. The resulting electrode material displays excellent electrocatalytic activities and stability towards both OER (oxygen evolution reaction) and HER (hydrogen evolution reaction). A relatively low overpotential of 306 mV is required to reach the current density of 100 mA cm?2 for OER and 137 mV at 10 mA cm?2 for HER in 1 M KOH solution. When PNi3S2/NF was used in an electrolyzer for full water splitting, it can generate a current density of 10 mA cm?2 at 1.47 V with excellent stability for more than 20 h.  相似文献   

2.
Creation of robust and stable electrocatalysts is a persistent objective for high-efficiency hydrogen evolution by water splitting. We present here the experimental realization of one-dimensional Mo incorporated W18O49 nanofibers (NFs) by a template-free solvothermal method. When utilized as electrocatalysts for hydrogen evolution through water splitting, the preliminary results demonstrate that the optimized catalytic electrode from 1 at% Mo doped W18O49 NFs yields an onset overpotential of 89 mV and Tafel slope of 49 mV dec?1 as well as maximal exchange current density up to 1.60 × 10?2 mA cm?2. An overpotential as low as 462 mV is required to attain current density of 50 mA cm?2 in comparison with 587 mV for pristine W18O49 NFs. Moreover, the Mo doped W18O49 NFs display relative stability by applying a potential of 503 mV and a current density of 80 mA cm?2 over 24 h in 0.5 M H2SO4 aqueous solution, making them promising in practical applications.  相似文献   

3.
The development of high efficiency and stable electrocatalysts for the electrochemical water oxidation reaction (WOR) is a grand bottleneck in chemical energy storage and conversion. This article describes a simple co-precipitation route to deposit hierarchical NiCo2S4@Ni3V2O8 core/shell hybrid on conductive nickel foam electrode by a simple two-step process. When it is firstly used as the 3D substrates electrode, the NiCo2S4@Ni3V2O8 material makes use of both components and provides excellent water oxidation activity, 35 mA cm?2 was achieved at a overpotential of 290 mV, which is better than the benchmark of IrO2 electrodes (320 mV of overpotential at 35 mA cm?2) and 13 mA cm?2 at 1.47 V with excellent durability. The enhanced water oxidation performance of the NiCo2S4@Ni3V2O8 materials is mainly benefiting from its particular core/shell structure, which exhibits big surface areas, and fast electron and ion transfer. Ni3V2O8 shell protects NiCo2S4 core from oxidation in the in alkaline electrolytes and improves stability of NiCo2S4@Ni3V2O8.This indicates that most metal vanadates oxides-based electrodes are promising as an efficient electrocatalyst and shows the advantages of the interfacial effect, which provide a new idea toward high-performance flexible water oxidation fabrication of robust and cheap catalyst sample.  相似文献   

4.
Design of inexpensive and highly efficient bifunctional electrocatalyst is paramount for overall water splitting. In this study, amorphous Ni–Fe–P alloy was successfully synthesized by one-step direct-current electrodeposition method. The performance of Ni–Fe–P alloy as a bifunctional electrocatalyst toward both hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated in 30 wt% KOH solution. It was found that Ni–Fe–P alloy exhibits excellent HER and OER performances, which delivers a current density of 10 mA cm?2 at overpotential of ~335 mV for HER and ~309 mV for OER with Tafel slopes of 63.7 and 79.4 mV dec?1, respectively. Moreover, the electrolyzer only needs a cell voltage of ~1.62 V to achieve 10 mA cm?2 for overall water splitting. The excellent electrocatalytic performance of Ni–Fe–P alloy is attributed to its electrochemically active constituents, amorphous structure, and the conductive Cu Foil.  相似文献   

5.
Herein, we develop a direct current arc discharge method which enables large-scale synthesis of nickel@carbon attached single-walled carbon nanotube networks as an electrocatalyst for highly efficient water splitting. Mass amount of Ni@C/SCN (~80 g) could be easily obtained. After optimization, the catalyst exhibits a superior performance of electrochemical water splitting, which allows a current density of 10 mA cm?2, with an overpotential of only 260 mV for OER and 198 mV for HER. The electrolyzer can achieve a current density of 10 mA cm?2 at 1.8 V.  相似文献   

6.
Among different strategies, water splitting toward hydrogen production is a promising process to store energy from intermittent sources. However, the anodic water oxidation is a bottleneck for water splitting. In this paper, we report an aluminum/cobalt/iron/nickel alloy as a precatalyst for the electrochemical water oxidation. The alloy electrode contains different metal ions including cobalt, iron, and nickel which all are efficient for water oxidation is tested. We characterized this electrode using scanning electron microscopy, transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical methods. After stabilization, the electrode shows an onset overpotential of 200.0 mV and affords a current density of 3.5 mA cm?2 at an overpotential of 600.0 mV in KOH solution at pH 13.  相似文献   

7.
Development of efficient, earth-abundant and low-cost electrocatalyst for effective water electrolysis is highly demanding for production of sustainable hydrogen energy. In this paper, we report the cost-effective synthetic protocol for porous NiO hollow spheres in large scale through a simple spray drying strategy, using aqueous nickel ammonium carbonate complex solution, followed by calcination. The synthesized NiO hollow spheres calcined at 300 °C (NiO-300) are porous, made of nanoparticles in size range of 10–16 nm with a size range of 2.5–4 μm and total surface area of 120 m2/g. The NiO-300 exhibited excellent bifunctional electrocatalytic water splitting characteristic, both OER, and HER, in basic solution. NiO-300 modified glassy carbon electrode showed superior water electrolysis kinetics and to achieve 10 mA cm?2 current density, it required 370 mV overpotential for OER and 424 mV overpotential for HER in 1 M KOH. It is also worked well with cost-effective plastic chip electrode. An assembled two-electrode system by pairing NiO modified plastic chip electrode as both anode and cathode in a 1.0 M KOH electrolyte for overall water splitting exhibit clear bubble formation at 1.6 V potential.  相似文献   

8.
It is of high significance to design efficient, low-cost and durable electrocatalysts for the reaction (OER) in alkaline solution. In this communication, we report the development of CuCo2O4 microflowers directly on nickel foam (CuCo2O4/NF) as an efficient and durable electrocatalyst for OER. Such CuCo2O4/NF demands overpotential of only 296 mV to drive a geometrical catalytic current density of 20 mA cm?2, 73 mV and 145 mV less than that for Co3O4/NF and NF, respectively, which are better than that of RuO2/NF. Furthermore, CuCo2O4/NF presents an excellent long-term electrochemical durability maintaining the activity at overpotential of 240 mV for 10 h.  相似文献   

9.
a low-cost electrode with lawn-like NiS2 nanowire arrays on flexible carbon fiber paper was synthesized, for the first time, via sulfurization of Ni2(CO3)(OH)2 precursor. And the performance of this electrode as a bifunctional electrocatalyst toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated. It shows that NiS2 NWs/CFP requires small overpotentials of 165 mV for HER and 246 mV for OER, respectively, to deliver the current density of 10 mA cm?2 in 1.0 M KOH. The corresponding symmetric two-electrode alkaline water electrolyzer only needs a cell voltage of 1.59 V to afford 10 mA cm?2 water-splitting current density.  相似文献   

10.
Exploring low-cost and highly efficient Water splitting electrocatalyst has been recognized as one of the most challenging and promising ways. NiCo2S4 core-shell nanorods supported on nickel foam (NF) have been fabricated by a facile hydrothermal method. The electrochemical performance of NiCo2S4@NiCo2S4 for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is studied. NiCo2S4@NiCo2S4/NF exhibits a significantly improved OER and HER performance with an overpotential of 200 mV at 40 mA/cm2 and an overpotential of 190 mV at 10 mA/cm2. The combination of low charge-transfer resistance, enhanced interaction and charge transport as well as large electrochemical double-layer capacitance enables superior OER and HER. The NiCo2S4@NiCo2S4/NF nanorod electrode shows excellent electrocatalytic activity with a low voltage 1.57 V and stability with long hour electrolysis, which is highly satisfactory for a prospective bifunctional electrocatalyst.  相似文献   

11.
Tungsten disulfide (WS2) has attracted much attention as the promising electrocatalyst for hydrogen evolution reaction (HER). Herein, the three-dimensional (3D) structure electrode composed of WS2 and graphene/Ni foam has been demonstrated as the binder-free electrode for highly effective and stable HER. The overpotential of 3D WS2/graphene/Ni is 87 mV at 10 mA cm?2, and the current density is 119.1 mA cm?2 at 250 mV overpotential, indicating very high HER activity. Moreover, the current density of 3D WS2/graphene/Ni at 250 mV only decreases from 119.1 to 110.1 mA cm?2 even after 3000 cycles, indicating a good stability. The high HER performance of 3D WS2/graphene/Ni binder-free electrode is superior than mostly previously reported WS2-based catalysts, which is attributed to the unique graphene-based porous and conductive 3D structure, the high loading of WS2 catalysts and the robust contact between WS2 and 3D graphene/Ni backbones. This work is expected to be beneficial to the fundamental understanding of both the electrocatalytic mechanisms and, more significantly, the potential applications in hydrogen economy for WS2.  相似文献   

12.
The development of highly efficient and low-cost electrocatalysts is critical to the mass production of hydrogen from water splitting. Herein, a facile yet effective method was developed to synthesize bimetallic sulfides Ni3S2/CoSx, which were aimed for use as the electrocatalysts in both HER and OER. Encouragingly, the Ni3S2/CoSx demonstrated a low overpotential of 110 mV for HER at a current density of 10 mA·cm?2. It was discovered that the surface of Ni3S2/CoSx during OER process would undergo an in-situ oxidation to form MOOH (M = Co, Ni), that is, MOOH/Ni3S2/CoSx were the real functioning species in catalysis, which had an excellent OER activity and a low overpotential of 226 mV. Additionally, the assembled electrolyzer required only a low cell voltage of 1.53 V to achieve a current density of 10 mA·cm?2 in a 1 M KOH solution, and its performance was stable. Overall, this work provided a promising strategy for the facile fabrication of low-cost amorphous electrocatalysts, which is expected to promote the progress of overall water splitting.  相似文献   

13.
Developing non-noble metal catalysts with excellent electrocatalytic performance and stability is of great significance to hydrogen production by water electrolysis, but there are still problems of low activity, complex preparation and high cost. Herein, we fabricated a novel Ni3S2/Ni(OH)2 dual-functional electrocatalyst by a one-step fast electrodeposition on nickel foam (NF). While maintaining the electrocatalytic performance of Ni3S2, the existence of heterostructure and Ni(OH)2 co-catalyst function greatly improves the overall water splitting performance of Ni3S2/Ni(OH)2–NF. Hence, It shows a low overpotential of 66 mV at 10 mA cm?2 for HER and 249 mV at 20 mA cm?2 for OER. The dual-functional electrocatalyst needs only 1.58 V at 20 mA cm?2 when assembled two-electrode electrolytic cell. Impressively, the electrocatalyst also shows outstanding catalytic stability for about 800 h when 20 and 50 mA cm?2 constant current was applied, respectively which demonstrates a potential electrocatalyst for overall water splitting.  相似文献   

14.
The exploration of highly efficient and low-cost bifunctional electrocatalyst is essential for overall water splitting, especially for industrial application under alkaline conditions. Herein, we propose a controllable structural engineering strategy of constructing heterogeneous layered electrocatalyst with wetting surface for hydrogen evolution reaction and oxygen evolution reaction. Heterogeneous layered NiFe LDH (layered double hydroxide)/CoFeP/NF (Ni foam) with superhydrophilic surfaces is successfully fabricated by successive electrodeposition, phosphorization and solvothermal method. The NiFe LDH/CoFeP/NF for hydrogen evolution achieves a low overpotential of 198 mV at 50 mA cm?2 in 1.0 M KOH. An overpotential of 269 mV is required at 50 mA cm?2 for oxygen evolution. Meanwhile, the practical utilization of NiFe LDH/CoFeP/NF as bifunctional electrocatalysts for overall water splitting yields 1.73 V at 50 mA cm?2 in the two-electrode cell. Moreover, NiFe LDH/CoFeP/NF can retain over 50 h without an obvious degradation at 10 mA cm?2. The satisfactory operating stability and high activity of NiFe LDH/CoFeP/NF in alkaline solution can be attributed to the heterogeneous layered structure and excellent hydrophilic surface. The study provides a strategy to engineering heterogeneous layered structures with wetting surface for excellent electrocatalytic activities toward overall water splitting.  相似文献   

15.
Oxygen evolution reaction (OER) is an essential reaction for overall electrochemical water splitting. In this present study, we adopt a facile electrochemical deposition method to synthesize the Li-doped NiFeCo oxides for OER in an alkaline medium. The scanning electron microscopy, X-ray diffraction, Brunauer-Emmet-Teller method and X-ray photo-electron spectroscopy provides the information of morphology, structure, specific surface area and electronic state of the electrocatalysts respectively. Investigates the electrochemical properties by the thin-film technique on a rotating disk electrode and in a single-cell laboratory water electrolyzer connects with electrochemical impedance spectroscopy. Among the catalysts under investigation, Ni0·9Fe0·1Co1·975Li0·025O4 exhibits the highest activity towards oxygen evolution reaction, and explains the activity by the oxygen binding energy; such knowledge can be helped to develop better catalyst. We achieve onset over potential 220 mV and receive 10 mA cm?2 current density at over potential 301 mV with Tafel slope 62 mV dec?1 in 1 M KOH solution. The results are similar to recently published catalysts in the literature. In water electrolyzer, the Ni0·9Fe0·1Co1·975Li0·025O4 modified nickel foam anode exhibits a current density of 143 mA cm?2 at a cell voltage of 1.85 V in 10 wt% KOH and a temperature of 50 °C.  相似文献   

16.
The flower-like Co9S8 microballs assembled with weak crystalline pea pod-shaped nanowires were fabricated via a one-pot hydrothermal reaction. The high-resolution TEM image of pea pod-shaped nanowires revealed a weak crystalline structure. Some regions were amorphous and some regions showed well-resolved lattice fringe. Because flower-like Co9S8 microballs possessed the more catalytic active sites of the weak crystalline character and the fast electron transfer along the nanowires, they would be promising catalysts for reduction of I3? in DSSCs and electrochemical water splitting. As the counter electrode catalysts for I3? reduction, DSSCs based on the Co9S8 microballs got a high photoelectrical conversion efficiency of 7.0%, which was comparable with DSSCs based on standard platinum (7.48%). As the electrocatalysts for hydrogen evolution reaction, the Co9S8 microball electrode possessed an overpotential of 173.8 and 191.3 mV at the current density of 10 mA cm?2 in acid and alkaline solution, respectively. Also, it displayed a superior catalytic activity for oxygen evolution reaction. The stability tests indicated that this microball could possess the high catalytic activity with long time. This kind of Co9S8 microballs assembled with weak crystalline pea pod-shaped nanowires paved a new way to low-cost catalyst for I3? reduction and water splitting.  相似文献   

17.
Active site engineering for electrocatalysts is an essential strategy to improve their intrinsic electrocatalytic capability for practical applications and it is of great significance to develop a new excellent electrocatalyst for overall water splitting. Here, Co3O4/nickel foam (NF) and Co2(P4O12)/NF electrocatalysts with flower-shaped and sea urchin-shaped structures are synthesized by a simple hydrothermal process and followed by a post-treatment method. Among them, Co2(P4O12)/NF shows good catalytic activity for hydrogen evolution reaction (HER), and at the current density of 10 mA cm?2, the overpotential is only 113 mV Co3O4/NF exhibits good catalytic activity for oxygen evolution reaction (OER), and the overpotential is 327 mV at 20 mA cm?2. An alkaline electrolyzer with Co3O4/NF and Co2(P4O12)/NF catalysts respectively as anode and cathode displays a current density of 10 mA cm?2 at a cell voltage of 1.59 V. This work provides a simple way to prepare high efficient, low cost and rich in content promising electrocatalysts for overall water splitting.  相似文献   

18.
A kind of composite electrocatalysts with the structure of MoO3 nanosheets coated by ZIF67 nanocrystals and grown on the nickel foam substrate (ZIF67@MoO3 NSs@NF) is prepared and mainly used as the electrode for oxygen evolution reaction (OER) and overall water splitting. The excellent electrocatalytic activity of ZIF67@MoO3 NSs@NF are demonstrated. It can use the overpotential (?) of 178 mV and 386 mV respectively to drive 10 mA cm?2 and 50 mA cm?2. It is also observed that the ZIF67@MoO3 NSs@NF electrode has the highest initial current density (45.7 mA cm?2) at 1.618 V and can maintain more than 90% of the initial current density after 20,000 s. The ZIF67@MoO3 NSs@NF electrode also shows the small HER overpotential of 135 mV at 10 mA cm?2. Furthermore, the voltage of ZIF67@MoO3 NSs@NF as a bifunctional overall water splitting catalysts is 1.58 V at 10 mA cm?2, which is superior to another noble metal electric catalyst combination RuO2/NF(+)//Pt–C/NF(?). And the ZIF67@MoO3 NSs@NF(+)//ZIF67@MoO3 NSs@NF(?) combination can maintain more than 90% of the initial current density after 65,000 s at 1.58 V. The main reason is the composite interface of MoO3 NSs and ZIF67 phases with Co–O bonds, C–O–Mo bonds and oxygen vacancies defects facilitates the increase of the active sites and efficient electron transfer rate.  相似文献   

19.
The water soluble molecular complex [Co(cyclam)(ClO4)]ClO4 (cyclam = 1,4,8,11-tetraazacyclotetradecane) is utilized as a precursor for deposition of highly active cobalt based nanostructured material on the electrode surface upon electrooxidation. The electrolysis of the complex at +1.1 V vs Ag/AgCl in 0.1 M potassium phosphate at pH 12 leads to the formation of a nanoporous Co(II) hydroxide/phosphate thin film on the printed carbon electrode. The deposited surface was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). The modified electrode (Co-PCE-12) is stable for more than 34 h during the continuous electrolysis. The modified electrode exhibits a high water oxidation catalytic activity of 6.5 mA cm?2 at an overpotential of 580 mV (0.9 V vs Ag/AgCl (3 M KCl) at pH 12) with 98% Faradaic yield.  相似文献   

20.
Exploration of multifunctional non-precious metal catalysts towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for many clean energy technologies. Here, two trifunctional catalysts based on M (Co, Ni), N and S tridoped carbon nanoplates (Co/N/S-CNPs and Ni/N/S-CNPs) are reported. Due to the relatively higher catalytic site content, graphitization degree and smaller charge-transfer resistance, the Co/N/S-CNPs catalyst shows higher activity and stability for ORR (onset potential of 0.99 V and half-wave potential of 0.87 V vs. RHE (reversible hydrogen electrode)), OER (overpotential at 10 mA cm?2 of 0.37 V) and HER than the Ni/N/S-CNPs catalyst. Furthermore, when constructed with the Co/N/S-CNPs and commercial 20 wt% Pt/C + Ir/C cathodes, respectively, Zn-air battery (ZnAB) based on the Co/N/S-CNPs cathode displays better performance, including a higher power density of 96.0 mW cm?2 and cycling stability at 5 mA cm?2. In addition, an alkaline electrolyzer assembled with the Co/N/S-CNPs catalyst as a bifunctional catalyst can reach 10 mA cm?2 at 1.65 V for overall water splitting and maintain excellent stability even after cycling for 12 h. The present work proves the potential of the Co/N/S-CNPs catalyst for many clean energy devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号