首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, metal-based solid oxide fuel cells (SOFCs) receive much attention as new power converting systems, and reliable sealing is an essential requirement for the metal-based SOFC stacks. In this study, metal-based SOFC stacks with a reliable sealing method are developed for transportation applications. For successful development, bolt-spring and hydraulic compression methods for stack tightening are discussed in terms of their applicability to vehicles. Then, detailed stack designs are developed to obtain sufficient compressive stress on the surfaces of the sealing gaskets based on the finite element method (FEM). To maintain the compression and heat insulation of the stack, a hot box is designed based on the thermogravimetric properties, shrinkage behaviors, and mechanical properties of sealing gaskets of mica and Thermiculite 866LS, and ceramic fiber insulating board. As a result, a 1-cell stack unit is successfully fabricated and tested based on the designs, and a sealing rate of 100 ± 0.78% is achieved at an operating temperature of 800 °C. This study investigates comprehensive stack and sealing design processes, and it has broad implications for reliable stack development.  相似文献   

2.
3.
The properties and performance of micro-tubular solid oxide fuel cells are compared and the differentiating factors discussed. The best recorded power density for a single cell in the literature to date is 1.1 W cm−2, with anode microstructure and current collection technique emerging as two key factors influencing electrical performance. The use of hydrocarbon fuels instead of pure hydrogen and methods for reducing the resultant carbon deposition are briefly discussed. Performance on thermal and reduction-oxidation (RedOx) cycling is also a critical issue for cell durability. Combining these individual cells into stacks is necessary to obtain useful power outputs. As such, issues of fluid and heat transfer within such stacks become critical, and computational modelling can therefore be a useful design tool. Experimentally tested stacks and stack models are discussed and the findings summarised. New results for a simple stack manufactured at the University of Birmingham are also given.  相似文献   

4.
Two anode-supported tubular solid oxide fuel cells (SOFCs) have been connected by a co-sintered ceramic interconnector to form a stack. This novel bilayered ceramic interconnector consists of La-doped SrTiO3 (La0.4Sr0.6TiO3) and Sr-doped lanthanum manganite (La0.8Sr0.2MnO3), which is fabricated by co-sintering with green anode at 1380 °C for 3 h. La0.4Sr0.6TiO3 (LST) acts as a barrier avoiding the outward diffusion of H2 to the cathode; while La0.8Sr0.2MnO3 (LSM) prevents O2 from diffusing inward to the anode. The compatibility of LST and LSM, as well as their microstructure which co-sintered with anode are both studied. The resistances between anode and LST/LSM interconnector at different temperatures are determined by AC impedance spectra. The results have showed that the bilayered LST/LSM is adequate for SOFC interconnector application. The active area is 2 cm2 for interconnector and 16 cm2 for the total cathode of the stack. When operating at 900 °C, 850 °C, 800 °C with H2 as fuel and O2 as oxidant, the maximum power density of the stack are 353 mW cm−2, 285 mW cm−2 and 237.5 mW cm−2, respectively, i.e., approximately 80% power output efficiency can be achieved compared with the total of the two single cells.  相似文献   

5.
6.
A 6 kW class interconnector-type anode-supported tubular solid oxide fuel cell (ICT SOFC) stack is fabricated and operated in this study. An optimized current-collection method, which the method for current collection at the cathode using the winding method and is the method for the connection between cells using interconnect, is suggested to enhance the performance of the fabricated cell. That method can increase the current collection area because of usage of winding method for cell and make the connection between cells easy. The performance of a single cell with an effective electrode area of 205 cm2 exhibits 51 W at 750 °C and 0.7 V. To assemble a 1 kW class stack, the prepared ICT SOFC cells are connected in series to 20 cells connected in parallel (20 cells in series × two in parallel, 20S2P). Four modules are assembled for a 6 kWe class stack. For one module, the prepared ICT SOFC cells are connected in series to 48 cells, in which one unit bundle consists of two cells connected in parallel. The performance of the stack in 3% humidified H2 and air at 750 °C exhibits the maximum electrical power of 7425 W.  相似文献   

7.
A 3-cell stack of anode supported planar solid oxide fuel cell was built to evaluate the application of an external-manifold design in this research. This short stack was operated with hydrogen as fuel and air as oxidant at 750 °C. The stack had an OCV of 3.36 V, produced about 100 W in total power with a power density of 0.56 W/cm2. The stack also underwent 51 h degradation test at the current density of 0.55 A/cm2. The test results have demonstrated that this external-manifold stack had an excellent and steady performance during the test. Computer simulation was employed to help optimizing the parameters of the design and explaining the different performances between the cells. The simulation results suggested that the external-manifold design could generate a uniform gas distribution for a short stack, and the different performances of the individual cells were mainly caused by the uneven temperatures distribution between the cells.  相似文献   

8.
A micro-tubular, solid oxide fuel cell stack has been developed and operated under single-chamber conditions. The stack, made of three single-cells, arranged in triangular configuration, was operated between 500 and 700 °C with varying methane/air mixtures. The results show that the operating conditions for the stack differ significantly than the single-cell operation reported in our earlier study. The stack operated at 600 °C with methane/oxygen mixture of 1.0 gives stable performance for up to 48 h, whereas for the single-cell, this mixing ratio was not suitable. The increase in the inert gas flow rate improves the stack performance up to a certain extent, beyond that; the power output by the stack reduces due to extensive dilution of the reactants. It is concluded that both, the operating conditions and the addition of inert gas, need to be tuned according to the number of cells present within the stack.  相似文献   

9.
Operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell (SIS-SOFC) stack directly on methane is studied. A cone-shaped solid oxide fuel cell stack is assembled by connecting 11 cone-shaped anode-supported single cells in series. The 11-cell-stack provides a maximum power output of about 8 W (421.4 mW cm−2 calculated using active cathode area) at 800 °C and 6 W (310.8 mW cm−2) at 700 °C, when operated with humidified methane fuel. The maximum volumetric power density of the stack is 0.9 W cm−3 at 800 °C. Good stability is observed during 10 periods of thermal cycling test. SEM-EDX measurements are taken for analyzing the microstructures and the coking degrees.  相似文献   

10.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Experiments and equilibrium analysis were conducted to study carbon formation during diesel reforming for a solid oxide fuel cell-based auxiliary power unit (APU) application. A photo-acoustic instrument provided direct measurements of solid carbon concentration in the reformer effluent stream, which could be correlated to reformate gas composition (as determined via mass spectrometer) and reformer temperature. These measurements were complimented by equilibrium calculations based upon minimization of total Gibbs free energy. It was determined that oxygen-to-carbon ratio (O/C), fuel utilization fraction and anode recycle fraction all influence the degree of carbon formation, and that once significant carbon concentration is measured, the reformer performance begins to show marked degradation. At a fixed operating point, lowering the reformer temperature produced by far the largest change in effluent carbon concentration. Systematic variation in O/C, fuel utilization and anode recycle revealed the interdependence among reformer temperature, effluent gas composition and carbon concentration, with a strong correlation between carbon and ethylene concentrations observed for [C2H4] > 0.8%. After each experiment, baseline reformer performance could be recovered by operation under methane partial oxidation (POx) conditions, indicating that reformer degradation results at least in part from carbon deposition on the reformer catalyst.  相似文献   

12.
It is well known that cell imbalance can lead to failure of batteries. Prior theoretical modeling has shown that similar failure can occur in solid oxide fuel cell (SOFC) stacks due to cell imbalance. Central to failure model for SOFC stacks is the abnormal operation of a cell with cell voltage becoming negative. For investigation of SOFC stack failure by simulating abnormal behavior in a single cell test, thin yttria-stabilized zirconia (YSZ) electrolyte, anode-supported cells were tested at 800 °C with hydrogen as fuel and air as oxidant with and without an applied DC bias. When under a DC bias with cell operating under a negative voltage, rapid degradation occurred characterized by increased cell resistance. Visual and microscopic examination revealed that delamination occurred along the electrolyte/anode interface. The present results show that anode-supported SOFC stacks with YSZ electrolyte are prone to catastrophic failure due to internal pressure buildup, provided cell imbalance occurs. The present results also suggest that the greater the number of cells in an SOFC stack, the greater is the propensity to catastrophic failure.  相似文献   

13.
Micro-tubular proton-conducting solid oxide fuel cells (SOFCs) are developed with thin film BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) electrolytes supported on Ni-BZCYYb anodes. The substrates, NiO-BZCYYb hollow fibers, are prepared by an immersion induced phase inversion technique. The resulted fibers have a special asymmetrical structure consisting of a sponge-like layer and a finger-like porous layer, which is propitious to serving as the anode supports for micro-tubular SOFCs. The fibers are characterized in terms of porosity, mechanical strength, and electrical conductivity regarding their sintering temperatures. To make a single cell, a dense BZCYYb electrolyte membrane about 20 μm thick is deposited on the hollow fiber by a suspension-coating process and a porous Sm0.5Sr0.5CoO3 (SSC)-BZCYYb cathode is subsequently fabricated by a slurry coating technique. The micro-tubular proton-conducting SOFC generates a peak power density of 254 mW cm−2 at 650 °C when humidified hydrogen is used as the fuel and ambient air as the oxidant.  相似文献   

14.
A novel design of cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack is presented in this paper. The cone-shaped tubular anode substrates are fabricated by slip casting technique and the yttria-stabilized zirconia (YSZ) electrolyte films are deposited onto the anode tubes by dip coating method. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 7 μm is successfully obtained. The single cell, NiO-YSZ/YSZ (7 μm)/LSM-YSZ, provides a maximum power density of 1.78 W cm−2 at 800 °C, using moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC is fabricated. Its typical operating characteristics are investigated, particularly with respect to the thermal cycling test. The results show that the two-cell-stack has good thermo-mechanical properties and that the developed segmented-in-series SOFC stack is highly promising for portable applications.  相似文献   

15.
This study examines the performance of a ten-cell solid oxide fuel cell (SOFC) stack with a non-uniform flow rate in the stacking direction. The author develops a two-dimensional numerical method to solve the electrochemical, mass and energy equations one stack at a time. The energy equations couple the heat exchange between the interconnector and both the cell and the flowing gas of adjacent cells. Moreover, this paper considers two boundary conditions, adiabatic and constant temperature, on the top and bottom faces of the SOFC. The results show that the non-uniform inlet flow rate of the fuel dominates the current density distribution; it causes the cell voltage to vary by over 13% for both boundary conditions. In addition, the constant temperature condition in this study can produce 3% more power than with the adiabatic condition. On the other hand, the air dominates the temperature field of a SOFC, and the non-uniform inlet flow rate of the air produces a variation of 3% in the average cell temperature of the cells when the boundary condition is adiabatic. This non-uniform effect on the electrical performance of each stack is apparently larger than in the transverse direction, which has been examined in our previous research.  相似文献   

16.
A metal-supported solid oxide fuel cell (SOFC) composed of a Ni–Ce0.8Sm0.2O2−δ (Ni–SDC) cermet anode and an SDC electrolyte was fabricated by suspension plasma spraying on a Hastelloy X substrate. The cathode, an Sm0.5Sr0.5CoO3 (SSCo)–SDC composite, was screen-printed and fired in situ. The dynamic behaviour of the cell was measured while subjected to complete fuel shutoff and rapid start-up cycles, as typically encountered in auxiliary power units (APU) applications. A promising performance – with a maximum power density (MPD) of 0.176 W cm−2 at 600 °C – was achieved using humidified hydrogen as fuel and air as the oxidant. The cell also showed excellent resistance to oxidation at 600 °C during fuel shutoff, with only a slight drop in performance after reintroduction of the fuel. The Cr and Mn species in the Hastelloy X alloy appeared to be preferentially oxidized while the oxidation of nickel in the metallic substrate was temporarily alleviated. In rapid start-up cycles with a heating rate of 60 °C min−1, noticeable performance deterioration took place in the first two thermal cycles, and then continued at a much slower rate in subsequent cycles. A postmortem analysis of the cell suggested that the degradation was mainly due to the mismatch of the thermal expansion coefficient across the cathode/electrolyte interface.  相似文献   

17.
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented.A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system.Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors.Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.  相似文献   

18.
Surface modification of electrodes for realizing high electrochemical reactivity and thermal stability is an attractive strategy for high-performance low temperature solid oxide fuel cells (LT-SOFCs). Herein, the atomic-layer-deposited (ALD) CeO2-coated Pt anode structure is fabricated and applied to anodized aluminum oxide (AAO)-based thin-film LT-SOFC. The effect of Pt anode morphology on the infiltration of ALD CeO2 is elucidated. Anode kinetics are improved in the ALD CeO2-coated porous Pt anode cell possibly due to the larger Pt–CeO2 interface density, leading to a decrease in activation resistance by 86%. The maximum power density of the cell with the ALD CeO2-coated porous Pt anode shows 478 mW/cm2; a dramatic improvement by a factor of two compared to the bare porous Pt anode.  相似文献   

19.
We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.  相似文献   

20.
Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号