首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ru nanoparticles supported on graphene have been synthesized via a one-step procedure using methylamine borane as reducing agent. Compared with NaBH4 and ammonia borane, the as-prepared Ru/graphene NPs reduced by methylamine borane exhibit superior catalytic activity towards the hydrolytic dehydrogenation of ammonia borane. Additionally, the Ru/graphene NPs exhibit higher catalytic activity than its graphene free counterparts, and retain 72% of their initial catalytic activity after 4 reaction cycles. A kinetic study shows that the catalytic hydrolysis of ammonia borane is first order with respect to Ru concentration, the turnover frequency is 100 mol H2 min−1 (mol Ru)−1. The activation energy for the hydrolysis of ammonia borane in the presence of Ru/graphene NPs has been measured to be 11.7 kJ/mol, which is the lowest value ever reported for the catalytic hydrolytic dehydrogenation of ammonia borane.  相似文献   

2.
3.
4.
Amorphous and well dispersed Co nanoparticles (less than 10 nm) have been in situ synthesized in aqueous solution at room temperature. The as-synthesized Co nanoparticles possess high catalytic activity (1116 L mol−1 min−1) and excellent recycling property for the hydrogen generation from aqueous solution of ammonia borane under ambient atmosphere at room temperature. The present low-cost catalyst, high hydrogen generation rate and mild reaction conditions (at room temperature in aqueous solution) represent a promising step toward the development of ammonia borane as a viable on-board hydrogen-storage and supply material.  相似文献   

5.
We report on CoMoB nanoparticles supported on foam Ni as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3) solution. The CoMoB/foam Ni catalysts with different molar ratios of Co2+and MoO42− were synthesized via the electroless-deposition technique at ambient temperature. In order to analyze the phase composition, chemical composition, microstructure, and electron bonding structure of the as-prepared samples, powder X–ray diffraction (XRD), inductively coupled plasma-mass spectroscopy (ICP-MS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used. The results showed that CoMoB nanoparticles were variously dispersed on the surface of the foam Ni and the catalytic activity correlated with the molar ratio of Co2+ and MoO42−. The highest hydrogen generation rate was 5331.0 mL min−1 gcat−1 at 298 K, and the activation energy was calculated to be 45.5 kJ mol−1 toward the hydrolysis of NH3BH3 solution. The better catalytic activity was largely attributed to the smaller particle size, higher surface roughness and the novel three-dimensional cone-like architectures of the obtained samples. The kinetic results show that the hydrolysis of NH3BH3 is a first-order reaction in catalyst concentration. In addition, the reusability experiment exhibited that the catalytic activity was reduced after 5 cycles and the reason of the decay was also investigated.  相似文献   

6.
Chemically derived graphene (CDG) was prepared by hydrazine hydrate reduction of graphene oxide and used as support for palladium nanoparticles (Pd NPs) generated ex situ with controllable particle size and dispersion. The Pd NPs supported on CDG were well characterized by using a combination of advance analytical techniques and employed as catalyst in the dehydrogenation and hydrolysis of ammonia borane (AB) in organic solvents and aqueous solutions, respectively. Monodisperse Pd NPs of 4.5 nm were prepared from the reduction of palladium(II) acetylacetonate by tert-butylamine borane in the presence of oleylamine. They were readily impregnated on CDG which has BET surface area of 500 m2 g−1. Pd NPs retain their particle size dispersion and stability when supported on chemically derived graphene. The resulting materials are highly active and stable catalyst for the dehydrogenation and hydrolysis of AB. In addition to their high activity and stability, these Pd NPs are also reusable catalyst in both dehydrogenation and hydrolysis of AB preserving 85% and 95% of initial activity after 5th and 10th runs, respectively.  相似文献   

7.
Trimetallic nanoparticles of non-noble Cu–Fe–Co with different molar ratios were successfully immobilized in the metal-organic frameworks (MIL-101) via an easy impregnation–reduction process. XRD, TEM, XPS, ICP-MS and BET methods were used to characterize the catalyst. Comparing to their bimetallic counterparts, Cu6Fe0.8Co3.2@MIL-101 demonstrates the best catalytic performance for dehydrogenation of ammonia borane by hydrolysis at 298 K Cu6Fe0.8Co3.2@MIL-101 shows a total turnover frequency (TOF) value of 23.2 molH2 molcatalyst−1 min−1 and an activation energy value of 37.1 kJ mol−1. The enhancement of catalytic activity was attributed to a synergistic effect among copper, cobalt and iron nanoparticles supported on MIL-101. In addition, the catalyst still exhibits good stability and magnetic recyclability after seven cycles. The low-cost catalyst has good prospect for application in the field of hydrogen storage.  相似文献   

8.
9.
Ammonia borane (AB) hydrolysis is a comparative strategy for developing the sustainable hydrogen economy. Considering the hydrolysis cannot occur kinetically at low temperature, a suitable catalyst is indispensable. In this work, the dispersed ruthenium nanoparticles are stabilized on hexagonal boron nitride (h-BN) via an adsorption-in situ reduction procedure. Various characterization techniques are adopted for elucidating the structure-performance relationship of the obtained catalysts for the hydrolytic dehydrogenation of AB. In the presence of the resultant Ru/h-BN catalysts, the corresponding turnover frequency (1177.5 min?1) in alkaline solution at 303 K and the apparent activation energy (24.1 kJ mol?1) are superior to most literature previously reported. Our work provides a facile fabrication method for metal-based catalysts, which are highly promising in chemical storage material hydrolysis.  相似文献   

10.
An effective strategy synthesis of Rh/meso-Al2O3 catalysts was demonstrated by mechanochemistry for hydrolytic dehydrogenation of ammonia borane (AB). These catalysts are characterized systematically by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the turnover frequency (TOF) and activation energy (Ea) are 246.8 molH2·molRh?1·min?1 and 47.9 kJ mol?1 for hydrolytic dehydrogenation of at 298 K catalyzed by Rh/Al2O3-CTAB-400, obviously higher than those previously reported catalysts. Furthermore, catalyst Rh/Al2O3-CTAB-400 can be recycled by simple centrifugal separation and the catalytic activity is still well maintained after five cycles. In addition, a plausible mechanism for hydrolytic dehydrogenation of AB has also been proposed. This mechanochemical synthesis method exhibits great application prospects for the preparation of heterogeneous catalysts.  相似文献   

11.
To exploit the low-cost and efficient catalyst for the hydrolytic dehydrogenation of ammonia borane, trace amount of palladium-doped transition metal (Cu, Ni, Co, Fe and Zn) nanoparticles have been incorporated into the interior of metal-organic frameworks named ZIF-8, ZIF-67, ZIF-67/ZIF-8 and core-shell ZIF-67@ZIF-8 by a double-solvent approach. The optimized catalyst of CuPd0.01@ZIF-67@ZIF-8 composite exhibited an excellent activity with a turnover frequency (TOF) value of 30.15 mol H2 (molmetal)−1 min−1 at 298 K and a relatively low activation energy of 38.78 kJ mol−1. It might attributed to both ultrafine size of metal nanoparticles (~3 nm) induced by the confinement of core-shell ZIF-67@ZIF-8 and the synergistic effect between Pd and Cu. Moreover, the detailed kinetic study has manifested that this catalytic reaction is first-order in regards to the catalyst amount while zero-order as for the concentration of ammonia borane. In addition, the durability and recyclability of CuPd0.01@ZIF-67@ZIF-8 have been demonstrated to be great.  相似文献   

12.
Cobalt clusters-silica nanospheres (15-30 nm) were synthesized using a Co(NH3)6Cl3 template method in a polyoxyethylene-nonylphenyl ether/cyclohexane reversed micelle system followed by in situ reduction in aqueous NaBH4/NH3BH3 solutions. The cobalt clusters are located either inside or on the outer surface of the silica nanospheres as shown by the transmission electron microscope (TEM)/energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) measurements. The cobalt-silica nanospheres have a high catalytic activity for the hydrolysis of ammonia borane that generates a stoichiometric amount of hydrogen, and can be efficiently cycled and reused 10 times without any significant loss of the catalytic activity.  相似文献   

13.
Monodisperse CuNi nanoparticles are conveniently prepared by the reduction of cupric acetate and nickel(II) acetylacetonate in the presence of oleylamine and borane tributylamine under inert gas atmosphere. It is found that among the CuNi system, Cu0.9Ni0.1 shows the best performance for catalyzing the dehydrogenation of ammonia borane. In total, 2.5 equiv. of hydrogen per ammonia borane is generated even at room temperature with an initial turnover frequency value of 212.3 mol of H2·(mol of Cu0.9Ni0.1)?1·h?1, which is comparable to the best Pd-based catalyst ever reported. The remarkable catalytic performance is attributed to the mild affiliation of oleylamine (OAm) to NPs, which not only stabilizes NPs to maintain good dispersion but also leaves sufficient surface active sites to facilitate the catalytic reaction. This low-cost and high catalytic performance catalyst makes it an exciting alternative towards the application of ammonia borane as a hydrogen storage material for fuel cell applications.  相似文献   

14.
Nickel clusters contained within silica nanospheres (20-30 nm) were synthesized by using a Ni(NH3)6Cl2 crystal template method in a polyoxyethylene-nonylphenyl ether/cyclohexane reversed micelle system followed by an in situ reduction in aqueous NaBH4/NH3BH3 solutions. Metallic nickel clusters exist inside the SiO2 nanospheres prepared by the method while oxidized nickel clusters prepared by the conventional impregnation method were supported on the outer surface of silica as shown in the results of transmission electron microscope (TEM)/energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) measurements. The nickel clusters inside of silica nanospheres show higher catalytic activity for hydrolysis of ammonia borane to generate stoichiometric amount of hydrogen than the supported nickel catalysts.  相似文献   

15.
Co core-Pt shell nanoparticles (denoted as Co1−x@Ptx where x = 0.33, 0.43, 0.60, 0.68, 0.82) and carbon supported Co core-Pt shell nanoparticles (denoted as Co1−x@Ptx/C where x = 0.60, 0.68, 0.82) (Co1−x@Ptx/C = 43%), which are synthesized through a polyol reduction process with oleic acid as a surfactant, have been investigated as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3) at 25 ± 0.5 °C. The as-prepared Co core-Pt shell nanoparticles are uniformly dispersed on carbon surface with diameters of about 3 nm. It is found that the catalysts show favorable performance toward the hydrolysis of NH3BH3 and the catalytic activity is associated with the ratio of Pt to Co. Among the catalysts studied, Co0.32@Pt0.68/C (Co0.32@Pt0.68/C = 43%) displays the highest catalytic performance, delivering a high hydrogen-release rate of 4874 mL min−1 g−1 (per catalyst).  相似文献   

16.
Ammonia borane (AB) has been identified as one of the most promising candidates for chemical hydrogen storage. However, the practical application of AB for hydrogen production is hindered by the need of efficient and inexpensive catalysts. For the first time, we report that the incorporation of Mo into Cu@Co core-shell structure can significantly improve the catalytic efficiency of hydrogen generation from the hydrolysis of AB. The Cu0.81@Mo0.09Co0.10 core-shell catalyst displays high catalytic activity towards the hydrolysis dehydrogenation of AB with a turnover frequency (TOF) value of 49.6 molH2 molcat?1 min?1, which is higher than most of Cu-based catalysts ever reported, and even comparable to those of noble-metal based catalysts. The excellent catalytic performance is attributed to the multi-elements co-deposition effect and electrons transfer effect of Cu, Mo and Co in the tri-metallic core-shell NPs.  相似文献   

17.
Dehydrogenation of Ammonia Borane (NH3BH3, AB) catalyzed by transition metal heterogeneous catalysts was carried out in non-aqueous solution at temperatures below the standard polymer electrolyte membrane (PEM) fuel cell operating conditions. The introduction of a catalytic amount (∼2 mol%) of platinum to a solution of AB in 2-methoxyethyl ether (0.02–0.33 M) resulted in a rapid evolution of H2 gas at room temperature. At 70 °C, the rate of platinum catalyzed hydrogen release from AB was the dehydrogenation rate which was 0.04 g s−1 H2 kW−1.  相似文献   

18.
Well-dispersed bimetallic RuCo alloy nanoparticles (NPs) were successfully immobilized on the multi-porous, water-tolerant metal organic frameworks MIL-53(Al) by a facile solvent impregnation method. Among the RuCo@MIL-53(Al) with different Ru/Co molar ratios, the Ru1Co1@MIL-53(Al) performed better and was superior to Ru@MIL-53(Al) and single RuCo NPs for the hydrolysis of ammonia borane (AB, NH3BH3), owing to the synergistic effect caused by the electronic and geometric interactions between Ru and Co atoms and bi-functional effect generated between the RuCo NPs and the MIL-53(Al) support. Compared with bimetallic Ru1Ni1 and Ru1Cu1 counterparts loadings, the Ru1Co1@MIL-53(Al) also showed better catalytic activity for the hydrolysis of AB. Moreover, the Ru1Co1@ MIL-53(Al) presented good durability and reusability in the catalytic reaction, and the activation energy (Ea) and turnover frequency values (TOF) were 34.32 kJ mol?1 and 87.24 mol H2 min?1 (mol Ru)?1, respectively.  相似文献   

19.
We describe the preparation of bimetallic NiCu nanorods (NRs) incorporated on carbon nanofibers (NFs). The synthesis nanofibers were prepared by low cost and facile technique; electrospinning. Typically, sol–gel consisting of nickel acetate, copper acetate, and poly (vinyl alcohol) was electrospun. Sintering of the electrospun nanofiber mats in argon atmosphere led to partial elimination of the utilized polymer and abnormal decomposition of the metallic acetates to finally produce NiCu nanorods incorporated in carbon nanofibers. The as-obtained nanofibers were characterized by SEM, FE-SEM, XRD, TGA, XPS, TEM, and TEM-EDX standard techniques. The introduced bimetallic nanofibers revealed superior catalytic activity toward hydrogen release from ammonia borane. Also, they showed a good chemical stability due to covering the bimetallic nanorods by carbon shells. Interestingly, nanofibers were reused for 6 successive cycles with good catalytic activity. Moreover, the prepared nanofibers showed low activation energy about 28.9 kJ/mol. Finally, development of new catalytic materials in the field of energy is considered as a key objective of the modern research.  相似文献   

20.
Rh3+ ions are first impregnated on Group 4 metal oxides (TiO2, ZrO2, HfO2) in aqueous solution and, then reduced with aqueous solution of NaBH4 to form rhodium(0) nanoparticles (NPs) on the oxide surface. The analyses reveal that Rh(0) NPs are highly dispersed on the surface of TiO2, ZrO2, HfO2. Rh0/MO2 (M: Ti, Zr, Hf) NPs have high activity and reusability in releasing H2 from the hydrolysis of ammonia borane with an initial turnover frequency of 643, 198, and 188 min−1, respectively, at 25.0 ± 0.1 °C. The reusability of Rh0/ZrO2 and Rh0/HfO2 catalysts is higher than that of the Rh0/TiO2 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号