首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Zero-emission vehicle (ZEV) adoption is one of the critical solutions to decarbonize the transportation sector. Among the ZEV fleet in the US, battery electric vehicles (BEV) have been leading the market penetration. However, hydrogen fuel cell electric vehicles (FCEV) have also been increasingly adopted in recent years. Although both technologies have challenges with infrastructure, unlike BEVs that have multiple venues for charging (home, work or public), FCEVs rely solely on fueling at public hydrogen stations, and their availability is a significant factor before the vehicle purchase. Therefore, for the success of FCEV adoption, a need to monitor and understand the driver satisfaction of these stations is extremely critical. This research project introduces a quantitative-qualitative approach for continuous monitoring of hydrogen stations based on the station utilization patterns and to assess their preferability based on driver experiences. To illustrate a proof-of-concept, we collected the hourly utilization data of all the hydrogen fueling stations in California for three months. The time-series data was used to develop a capacity-independent term called “Normalized Relative Utilization Index” (NRUI) that encapsulates the utilization pattern of each station to a single metric. We spatially regressed this metric over the number of FCEVs present in the neighborhood to deduce the relationship. We designed a survey to obtain the refueling experiences of FCEV drivers, where about 100 participants responded with their station preferences. Their answers were used to validate the quantitative approach and identify a “Satisfactory Utilization Range” (SUR) of stations which are preferred by most drivers. Though this project illustrates the analysis of data collected over a small period, this approach is easily scalable with new station installations and can be implemented as a continuous monitoring system with real-time station utilization data. We believe this demand-focused approach could complement the existing supply-side monitoring methods on station performance to provide a smoother fueling experience to drivers. We are also releasing the hourly station capacity dataset that was collected as a part of this study to the research community.  相似文献   

2.
Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVs within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. The MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.  相似文献   

3.
The fuel cell plug in hybrid electric vehicle (FCPHEV) is a near-term realizable concept to commercialize hydrogen fuel cell vehicles (FCV). Relative to conventional FCVs, FCPHEVs seek to achieve fuel economy benefits through the displacement of hydrogen energy with grid-sourced electrical energy, and they may have less dependence on a sparse hydrogen fueling infrastructure. Through the simulation of almost 690,000 FCPHEV trips using geographic information system (GIS) data surveyed from a fleet of private vehicles in the Puget Sound area of Washington State, USA, this study derives the electrical and hydrogen energy consumption of various design and control variants of FCPHEVs. Results demonstrate that FCPHEVs can realize hydrogen fuel consumption reductions relative to conventional FCV technologies, and that the fuel consumption reductions increase with increased charge depleting range. In addition, this study quantifies the degree to which FCPHEVs are less dependent on hydrogen fueling infrastructure, as FCPHEVs can refuel with hydrogen at a lower rate than FCVs. Reductions in hydrogen refueling infrastructure dependence vary with control strategies and vehicle charge depleting range, but reductions in fleet-level refueling events of 93% can be realized for FCPHEVs with 40 miles (60 km) of charge depleting range. These fueling events occur on or near the network of highways at approximately 4% of the rate (refuelings per year) of that for conventional FCVs. These results demonstrate that FCPHEVs are a type of FCV that can enable an effective and concentrated hydrogen refueling network.  相似文献   

4.
The present work contributes an engineered life cycle assessment (LCA) of hydrogen fuel cell passenger vehicles based on a real‐world driving cycle for semi‐urban driving conditions. A new customized LCA tool is developed for the comparison of conventional gasoline and hydrogen fuel cell vehicles (FCVs), which utilizes a dynamic vehicle simulation approach to calculate realistic, fundamental science based fuel economy data from actual drive cycles, vehicle specifications, road grade, engine performance, fuel cell degradation effects, and regenerative braking. The total greenhouse gas (GHG) emission and life cycle cost of the vehicles are compared for the case of hydrogen production by electrolysis in British Columbia, Canada. A 72% reduction in total GHG emission is obtained for switching from gasoline vehicles to FCVs. While fuel cell performance degradation causes 7% and 3% increases in lifetime fuel consumption and GHG emission, respectively, regenerative braking improves the fuel economy by 23% and reduces the total GHG emission by 10%. The cost assessment results indicate that the current FCV technology is approximately $2,100 more costly than the equivalent gasoline vehicle based on the total lifetime cost including purchase and fuel cost. However, prospective enhancements in fuel cell durability could potentially reduce the FCV lifetime cost below that of gasoline vehicles. Overall, the present results indicate that fuel cell vehicles are becoming both technologically and economically viable compared with incumbent vehicles, and provide a realistic option for deep reductions in emissions from transportation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This study addresses two topics relevant to the expanding research on how early adopters of hydrogen fuel cell vehicles (FCVs) evaluate stations. First, we assess FCV adopters' access to available stations near home or on the way when they adopted their FCV. Second, we analyze characteristics of geographically convenient stations that drivers did not intend to use (“unlisted stations”) and compare to those they did (“listed stations”). Responses from a web-based survey distributed to FCV adopters in California indicate that nearly half lacked a station within 10 min’ drive of home, while nearly all had one on the way. Drivers did not intend to use nearly half of their geographically convenient stations. Compared to listed stations, unlisted stations are closer to other available ones and commonly only on the way, and several neighborhood-level differences are observed. These findings are important in the context of efforts to expand FCV uptake.  相似文献   

6.
The introduction of hydrogen infrastructure and fuel cell vehicles (FCVs) to gradually replace gasoline internal combustion engine vehicles can provide environment and energy security benefits. The deployment of hydrogen fueling infrastructure to support the demonstration and commercialization of FCVs remains a critical barrier to transitioning to hydrogen as a transportation fuel. This study utilizes an engineering methodology referred to as the Spatially and Temporally Resolved Energy and Environment Tool (STREET) to demonstrate how systematic planning can optimize early investments in hydrogen infrastructure in a way that supports and encourages growth in the deployment of FCVs while ensuring that the associated environment and energy security benefits are fully realized. Specifically, a case study is performed for the City of Irvine, California – a target area for FCV deployment – to determine the optimized number and location of hydrogen fueling stations required to provide a bridge to FCV commercialization, the preferred rollout strategy for those stations, and the environmental impact associated with three near-term scenarios for hydrogen production and distribution associated with local and regional sources of hydrogen available to the City. Furthermore, because the State of California has adopted legislation imposing environmental standards for hydrogen production, results of the environmental impact assessment for hydrogen production and distribution scenarios are measured against the California standards. The results show that significantly fewer hydrogen fueling stations are required to provide comparable service to the existing gasoline infrastructure, and that key community statistics are needed to inform the preferred rollout strategy for the stations. Well-to-wheel (WTW) greenhouse gas (GHG) emissions, urban criteria pollutants, energy use, and water use associated with hydrogen and FCVs can be significantly reduced in comparison to the average parc of gasoline vehicles regardless of whether hydrogen is produced and distributed with an emphasis on conventional resources (e.g., natural gas), or on local, renewable resources. An emphasis on local renewable resources to produce hydrogen further reduces emissions, energy use, and water use associated with hydrogen and FCVs compared to an emphasis on conventional resources. All three hydrogen production and distribution scenarios considered in the study meet California's standards for well-to-wheel GHG emissions, and well-to-tank emissions of urban ROG and NOX. Two of the three scenarios also meet California's standard that 33% of hydrogen must be produced from renewable feedstocks. Overall, systematic planning optimizes both the economic and environmental impact associated with the deployment of hydrogen infrastructure and FCVs.  相似文献   

7.
Full function hydrogen stations are a reality; fuel cell electric vehicle drivers can pull up to commercial fueling stations and receive 3–5 kg in less than 5 min, for an approximately 300-mile range. The demand for hydrogen is increasing, driven by an increase in the fueling of public and private fuel cell vehicles. This study describes the development and value of a model that simulates stochastic future demand at a hydrogen filling station. The predictive hydrogen demand model described in this article is trained from mathematical models constructed from actual hydrogen fill count, amount, and frequency data. Future fill probabilities inform the hour-by-hour demand profile and the station state of either “available, ready to fill” or “available, filling”. For example, a prediction for a station generally dispensing 5,000 kg a week on a Friday afternoon at 4 p.m. is 16 fills, totaling 48.7 kg, with a 0.52 proportion of time spent in “available, filling” state yielding 31 min of filling time. This is a first-of-its kind, published study on predicting future hydrogen demand by the time of day (e.g., hour-by-hour intervals) and day of week. This study can be used for hydrogen station requirements and operation and maintenance strategies and to assess the impact of demand variations and scenarios. This article presents the current status of hydrogen demand, the model development methods, a set of sample results. Discussion and conclusions concentrate on the value and use of the proposed model.  相似文献   

8.
The fast filling time for hydrogen fuel cell vehicles makes them a user-friendly zero emission alternative to fossil fuel powered vehicles. The filling, by compressing gas into the vehicle tanks, produces heat that can be damaging. There are different protocols, standardized or the intellectual property of station operators, dedicated for different specific applications taking into account the specificity of the vessel and customer requirements. Standard protocols are developed for worst case conditions across a broad range of vehicle tank sizes and configurations. These worst case conditions do not result in the most economical equipment solution for hydrogen fueling. To ensure safety for different existing and future potential protocols a new “Safety Watchdog” approach is suggested in the current paper. This “Safety Watchdog” monitors the fueling process boundary conditions independently from the main process controls. The decoupling between the watchdog and the protocol allows use of protocols that are more economically beneficial while ensuring full safety conditions. The current paper provides a mathematical formulation of the Safety Watchdog as well as its validation versus modeling and field experimental data.  相似文献   

9.
This article develops and tests an ethnographic decision model (EDM) of hydrogen fuel cell vehicle (FCV) adoption using interviews with California residents that either actually adopted an FCV or “seriously considered” doing so before deciding against it. We developed an initial model from 25 semi-structured interviews in which respondents self-described their decision-making processes. We iteratively tested and refined the model in a second round of 53 structured interviews. The final model consists of a first stage that assesses FCV adoption feasibility and a second stage that compares FCVs to other vehicle types. The model ultimately correctly predicts 86.8% of cases in the sample. In the first stage, respondents preferred to satisfy their need for a primary refueling station near home but a substantial number were willing to rely on a station near or on the way to work or other destination. Most drivers required a convenient backup station and a means of managing long-distance trips. Vehicle size options eliminated a few respondents. None rejected FCV adoption due to insufficient driving range. In the second stage, nearly all drivers engaged in some kind of cost comparison, though the factors considered varied greatly. Most opted for what they viewed as the less costly option, although a few FCV adopters and non-adopters were willing to pay more for their more preferred option. EDM is a promising qualitative research method for generating insights into how people navigate the decision whether or not to get an alternative-fuel vehicle.  相似文献   

10.
Over the last several decades, hydrogen fuel cell vehicles (FCVs) have emerged as a zero tailpipe-emission alternative to the battery electric vehicle (EV). To address questions about consumer reaction to FCVs, this report presents the results of a “ride-and-drive” clinic series (N = 182) held in 2007 with a Mercedes-Benz A-Class “F-Cell” hydrogen FCV. The clinic evaluated participant reactions to driving and riding in an FCV, as well as vehicle refueling. Pre-and post-clinic surveys assessed consumer response. More than 80% left with a positive overall impression of hydrogen. The majority expressed a willingness to travel 5–10 min to find a hydrogen station. More than 90% of participants would consider an FCV driving range of 300 miles (480 km) to be acceptable. Stated willingness-to-pay preferences were explored. The results show that short-term exposure can improve consumer perceptions of hydrogen performance and safety among people who are the more likely early adopters.  相似文献   

11.
This study proposes a heat release rate (HRR) estimation method for a carrier loaded with fuel cell vehicles (FCVs) trapped in a tunnel fire. The carrier is divided into several parts, and the HRR is estimated by adding the HRRs of all system parts (carrier and FCVs). The HRR of one FCV was compared with that of a gasoline vehicle. The thermal fume behavior in longitudinally inclined tunnel fires was also investigated. Even a modest inclination hastened the thermal fume propagation of the FCV fires. Of relevance to the prevention of tunnel fire disasters, the thermal fume behavior differed between FCV and gasoline fires. For safety assessment of tunnel fires, the thermal fume behaviors of an FCV fire and gasoline vehicle fire in a tunnel were investigated by the proposed method. In the case of no longitudinal inclination, the thermal fume of the FCV fire arrived earlier than that of the gasoline vehicle fire (by 1 min at x = 200 m and over 4 min at x = 250 m) because of the emitted hydrogen gas. At 2% longitudinal inclination, the thermal fume of the FCV fire propagated to the downstream side 4 min before that of the gasoline vehicle fire. At 4% longitudinal inclination, the thermal fume propagated 50 m downstream of the initial fire after 10 min. Therefore, after the hydrogen emission, the thermal fume of the FCV fire traveled faster than that of the gasoline vehicle fire. The proposed HRR estimation method can contribute to the risk analysis of various types of tunnel fires.  相似文献   

12.
As fuel cell technologies are developed, hydrogen‐powered vehicles are receiving more interest. The hydrogen economy, particularly hydrogen‐powered vehicle penetration into the Korean transportation market, is studied in this paper. Vensim, a system dynamic code, was used to simulate the dynamics in the transportation market, assuming various types of vehicles such as gasoline, hybrid electricity, and hydrogen powered. Market share for each vehicle was predicted using the currently available data. The results showed that the hydrogen era will not be as bright as predicted by many people. The main barrier is the fuel cell cost. Thus, in order to expand the fuel cell vehicles (FCVs) market, hydrogen fuel cell cost needs to be dramatically reduced. Hydrogen‐powered FCV cost, including operating and capital costs, should reach $0.16 per kilometer in order to seize 50% of the newly created transportation market. However, if strong policies or subsidies are implemented, the results predicted here will be affected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A transition from gasoline internal combustion engine vehicles to hydrogen fuel cell electric vehicles (FCEVs) is likely to emerge as a major component of the strategy to meet future greenhouse gas reduction, air quality, fuel independence, and energy security goals. Advanced infrastructure planning can minimize the cost of hydrogen infrastructure while assuring that energy and environment benefits are achieved. This study presents a comprehensive advanced planning methodology for the deployment of hydrogen infrastructure, and applies the methodology to delineate fully built-out infrastructure strategies, assess the associated energy and environment impacts, facilitate the identification of an optimal infrastructure roll-out strategy, and identify the potential for renewable hydrogen feedstocks. The South Coast Air Basin of California, targeted by automobile manufacturers for the first regional commercial deployment of FCEVs, is the focus for the study. The following insights result from the application of the methodology:
Compared to current gasoline stations, only 11%-14% of the number of hydrogen fueling stations can provide comparable accessibility to drivers in a targeted region.
To meet reasonable capacity demand for hydrogen fueling, approximately 30% the number of hydrogen stations are required compared to current gasoline stations.
Replacing gasoline vehicles with hydrogen FCEVs has the potential to (1) reduce the emission of greenhouse gases by more than 80%, reduce energy requirements by 42%, and virtually eliminate petroleum consumption from the passenger vehicle sector, and (2) significantly reduce urban concentrations of ozone and PM2.5.
Existing sources of biomethane in the California South Coast Air Basin can provide up to 30% of the hydrogen fueling demand for a fully built-out hydrogen FCEV scenario.
A step-wise transition of judiciously located existing gasoline stations to dispense and accommodate the increasing demand for hydrogen addresses proactively key infrastructure deployment challenges including a viable business model, zoning, permitting, and public acceptance.
  相似文献   

14.
Since transportation is one of the major contributors of global warming and air pollution, developing low-emission vehicles can significantly result in a more sustainable environment. In this research study, four different types of personal vehicles, including gasoline-fueled, CNG-fueled, electric, and hydrogen fuel cell vehicles (FCV) vehicles, are considered to analyze the role of personal vehicles in transportation. In the first step, based on common vehicles, all selected vehicles are simulated in the Simcenter Amesim Software. The primary aim of the modeling is to investigate the performance of each vehicle under the NYC driving conditions. The results indicate that under the selected driving cycle, CNG and gasoline-fueled vehicles consume 165.44g and 174.07g of CNG and gasoline in each driving cycle respectively, while the electric and hydrogen fuel cell vehicles consume 1.51% of the battery pack capacity and 26.47 g of hydrogen per driving cycle, respectively. In the next step, to study the vehicles' life cycle assessments (LCA), the GREET software is implemented to investigate the overall performance of the vehicles from the cradle to the grave. Based on the LCA results, CO2, CO, NOx, GHG, and SOx pollution are examined for all selected vehicles, in which the FCV indicates the best behavior. Finally, the emitted CO2 for FCV in comparison with gasoline-fueled, CNG-fueled, and EV vehicles were 75.87%, 73.42%, and 35.5% lower, respectively.  相似文献   

15.
This paper has performed an assessment of lifecycle (as known as well-to-wheels, WTW) greenhouse gas (GHG) emissions and energy consumption of a fuel cell vehicle (FCV). The simulation tool MATLAB/Simulink is employed to examine the real-time behaviors of an FCV, which are used to determine the energy efficiency and the fuel economy of the FCV. Then, the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model is used to analyze the fuel-cycle energy consumption and GHG emissions for hydrogen fuels. Three potential pathways of hydrogen production for FCV application are examined, namely, steam reforming of natural gas, water electrolysis using grid electricity, and water electrolysis using photovoltaic (PV) electricity, respectively. Results show that the FCV has the maximum system efficiency of 60%, which occurs at about 25% of the maximum net system power. In addition, the FCVs fueled with PV electrolysis hydrogen could reduce about 99.2% energy consumption and 46.6% GHG emissions as compared to the conventional gasoline vehicles (GVs). However, the lifecycle energy consumption and GHG emissions of the FCVs fueled with grid-electrolysis hydrogen are 35% and 52.8% respectively higher than those of the conventional GVs. As compared to the grid-based battery electric vehicles (BEVs), the FCVs fueled with reforming hydrogen from natural gas are about 79.0% and 66.4% in the lifecycle energy consumption and GHG emissions, respectively.  相似文献   

16.
Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be programmed to do so at times when the grid needs reserve power. Since providing this service can lead to payments to owners, it effectively reduces the life-cycle cost of owning an electric vehicle. Using data from a national stated preference survey, this paper presents a study of the potential consumer demand for V2G electric vehicles. In a choice experiment, 3029 respondents compared their preferred gasoline vehicle with two V2G electric vehicles. The V2G vehicles were described by a set of electric vehicle attributes and V2G contract requirements such as “required plug-in time” and “guaranteed minimum driving range”. The contract requirements specify a contract between drivers and a power aggregator for providing reserve power to the grid. Our findings suggest that the V2G concept is most likely to help EVs on the market if power aggregators operate either on pay-as-you-go basis (more pay for more service provided) or provide consumers with advanced cash payment (upfront discounts on the price of EVs), rather than imposing fixed requirements on participants.  相似文献   

17.
The objective of the present work is to validate the hydrogen energy roadmap of Japan by analyzing the market penetration of fuel cell vehicles (FCVs) and the effects of a carbon tax using an energy system model of Japan based on MARKAL. The results of the analysis show that a hydrogen FCV would not be cost competitive until 2050 without a more severe carbon tax than the government's planned 2400 JPY/t-C carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including the gasoline hybrid electric vehicle, hydrogen FCVs gain market penetration earlier and more. By assuming a more severe carbon tax rate, such as 10 000 JPY/t-C, the market share of hydrogen FCVs approaches the governmental goal. This suggests that cheaper vehicle cost and hydrogen cost than those targeted in the roadmap should be attained or subsidies to hydrogen FCV and hydrogen refueling station will be necessary for achieving the goal of earlier market penetration.  相似文献   

18.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

19.
《Journal of power sources》2006,155(2):297-310
The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to the use of recycled material. It is found that using 100% recycled material can reduce energy consumption by 45% and carbon dioxide emissions by 42%, mainly due to the reduced use of electricity during the manufacturing of the material.  相似文献   

20.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号