首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The zwitterion-coated polyamidoamine (ZC-PAMAM) dendrimer with ammonium and sulfonic acid groups has been synthesized and used as filler for the preparation of PBI-based composite membranes for direct methanol fuel cells. Polybenzimidazole (PBI)/ZC-PAMAM dendrimer composite membranes were prepared by casting a solution of PBI and ZC-PAMAM dendrimer, and then evaporating the solvent. The presence of ZC-PAMAM dendrimer was confirmed by FT-IR and energy-dispersive X-ray spectroscopy (EDS) mapping of sulfur and oxygen elements. The water uptake, swelling degree, proton conductivity, and methanol permeability of the membranes increased with the ZC-PAMAM dendrimer content. For the PBI/ZC-PAMAM-20 membrane with 20 wt% of ZC-PAMAM, it shows a proton conductivity of 1.83 × 10−2 S/cm at 80 °C and a methanol permeability of 5.23 × 10−8 cm2 s−1. Consequently, the PBI/ZC-PAMAM-20 demonstrates a maximum power density of 26.64 mW cm−2 in a single cell test, which was about 2-fold higher than Nafion-117 membrane under the same conditions.  相似文献   

2.
Composite membranes consisting of polyvinylidene fluoride (PVdF) and Nafion have been prepared by impregnating various amounts of Nafion (0.3–0.5 g) into the pores of electrospun PVdF (5 cm × 5 cm) and characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and proton conductivity measurements. The characterization data suggest that the unique three-dimensional network structure of the electrospun PVdF membrane with fully interconnected fibers is maintained in the composite membranes, offering adequate mechanical properties. Although the composite membranes exhibit lower proton conductivity than Nafion 115, the composite membrane with 0.4 g Nafion exhibits better performance than Nafion 115 in direct methanol fuel cell (DMFC) due to smaller thickness and suppressed methanol crossover from the anode to the cathode through the membrane. With the composite membranes, the cell performance increases on going from 0.3 to 0.4 g Nafion and then decreases on going to 0.5 g Nafion due to the changes in proton conductivity.  相似文献   

3.
Zeolite beta particles with different sizes and narrow size distribution were hydrothermally synthesized and incorporated into chitosan (CS) matrix to prepare CS/zeolite beta hybrid membranes for direct methanol fuel cell (DMFC). It was found that the chitosan membrane filled by zeolite beta particles about 800 nm in size exhibited the lowest methanol permeability, which can be ascribed to their optimum free volume and methanol diffusion characteristics. To further improve the performances of CS/zeolite beta hybrid membranes, zeolite beta particles about 800 nm in size were sulfonated via three different approaches. The results indicated that the introduction of sulfonic groups could reduce the methanol permeability further as a result of the enhanced interfacial interaction between zeolite beta and chitosan matrix. Furthermore, in terms of the overall selectivity index, CS/zeolite beta hybrid membranes were comparable to Nafion® 117 membrane at low methanol concentration (2 mol L−1) and much better at high methanol concentration (12 mol L−1).  相似文献   

4.
A novel composite polymer electrolyte membrane composed of a PVA polymer host and montmorillonite (MMT) ceramic fillers (2–20 wt.%), was prepared by a solution casting method. The characteristic properties of the PVA/MMT composite polymer membrane were investigated using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and micro-Raman spectroscopy, and the AC impedance method. The PVA/MMT composite polymer membrane showed good thermal and mechanical properties and high ionic conductivity. The highest ionic conductivity of the PVA/10 wt.%MMT composite polymer membrane was 0.0368 S cm−1 at 30 °C. The methanol permeability (P) values were 3–4 × 10−6 cm2 s−1, which was lower than that of Nafion 117 membrane of 5.8 × 10−6 cm2 s−1. It was revealed that the addition of MMT fillers into the PVA matrix could markedly improve the electrochemical properties of the PVA/MMT composite membranes; which can be accomplished by a simple blend method. The maximum peak power density of the DMFC with the PtRu anode based on Ti-mesh in a 2 M H2SO4 + 2 M CH3OH solution was 6.77 mW cm−2 at ambient pressure and temperature. As a result, the PVA/MMT composite polymer appears to be a good candidate for the DMFC applications.  相似文献   

5.
A highly porous polyimide film with tunable pore size, porosity and thickness is synthesized and used as a matrix to construct a Nafion-infiltrated composite membrane. A very efficient way for an easy and complete infiltration of the proton-conducting polymer into this substrate is developed, which is usually a major problem for composite membranes. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced (80 times), where as while high proton conductivity (comparable with Nafion) and mechanical strength (4 times stronger than Nafion) is still maintained. This membrane demonstrates significantly improved cell performance compared with the Nafion membrane and is a promising candidate for use in direct methanol fuel cells.  相似文献   

6.
This study examined methanol crossover through PtRu/Nafion composite membranes for the direct methanol fuel cell. For this purpose, 0.03, 0.05 and 0.10 wt% PtRu/Nafion composite membranes were fabricated using a solution impregnation method. The composite membrane was characterized by inductively coupled plasma-mass spectroscopy and thermo-gravimetric analysis. The methanol permeability and proton conductivity of the composite membranes were measured by gas chromatography and impedance spectroscopy, respectively. In addition, the composite membrane performance was evaluated using a single cell test. The proton conductivity of the composite membrane decreased with increasing number of PtRu particles embedded in the pure Nafion membrane, while the level of methanol permeation was retarded. From the results of the single cell test, the maximum performance of the composite membrane was approximately 27% and 31% higher than that of the pure Nafion membrane at an operating temperature of 30 and 45 °C, respectively. The optimum loading of PtRu was determined to be 0.05 wt% PtRu/Nafion composite membrane.The PtRu particles embedded in the Nafion membrane act as a barrier against methanol crossover by the chemical oxidation of methanol on embedded PtRu particles and by reducing the proton conduction pathway.  相似文献   

7.
The proton exchange membrane is one of the critical parts of a direct methanol fuel cell. High proton conductivity and low methanol permeability are required. To enhance the performance of a direct methanol fuel cell, graphene oxide was incorporated to Nafion-mordenite composite membranes to enhance the compatibility and to decrease methanol permeability. It was found that the membrane with silane grafted on graphene oxide-treated mordenite with a graphene oxide content of 0.05% presented the highest proton conductivity (0.0560 S·cm−1, 0.0738 S·cm−1 and 0.08645 S·cm−1 at 30, 50, and 70 °C, respectively). This was about 1.6-fold of the recast Nafion and commercial Nafion 117 and was about 1.5-fold of that without graphene oxide incorporation. Finally, the operating condition was optimized using response surface methodology and the maximum power density was investigated. Power density of about 4-fold higher than that of Nafion 117 was obtained in this work at 1.84 M and 72 °C with a %Error between the model prediction and the fuel cell experiment of 0.082%.  相似文献   

8.
Polysiloxane modified perfluorosulfonic acid (PFSA) composite membranes are prepared by using (3-mercaptopropyl) methyldimethoxysilane (MPMDMS) as a precursor of silicon alkoxide in supercritical carbon dioxide (Sc-CO2) system. In the Sc-CO2 system with the presence of water, Sc-CO2 is not only used as a solvent and swelling agent, but also functioned as an acid catalyst for the condensation polymerization of MPMDMS. Characteristics of the modified composite membranes are investigated by using attenuated total reflection-infrared spectra, scanning electron microscopy and transmission electron microscopy. The modified membrane with 13.9 wt.% poly(MPMDMS) is the best one among all the modified membranes, whose methanol permeability is extremely lower and selectivity (ratio of proton conductivity to methanol permeability) is about 5.49 times higher than that of pristine membrane and 5.88 times than that of Nafion® 117, respectively. This modified PFSA membrane still can maintain its higher selectivity value than that of Nafion® 117 in the temperature range of 25-65 °C. Therefore, the modified membranes prepared in Sc-CO2 system may be the suitable candidate electrolytes for direct methanol fuel cell applications.  相似文献   

9.
This paper was presented to determine the methanol crossover and efficiency of a direct methanol fuel cell (DMFC) under various operating conditions such as cell temperature, methanol concentration, methanol flow rate, cathode flow rate, and cathode backpressure. The methanol crossover measurements were performed by measuring crossover current density at an open circuit using humidified nitrogen instead of air at the cathode and applied voltage with a power supply. The membrane electrode assembly (MEA) with an active area of 5 cm2 was composed of a Nafion 117 membrane, a Pt–Ru (4 mg/cm2) anode catalyst, and a Pt (4 mg/cm2) cathode catalyst. It was shown that methanol crossover increased by increasing cell temperature, methanol concentration, methanol flow rate, cathode flow rate and decreasing cathode backpressure. Also, it was revealed that the efficiency of the DMFC was closely related with methanol crossover, and significantly improved as the cell temperature and cathode backpressure increased and methanol concentration decreased.  相似文献   

10.
A systematic method for modeling direct methanol fuel cells, with a focus on the anode side of the system, is advanced for the purpose of quantifying the methanol crossover phenomenon and predicting the concentration of methanol in the anode catalyst layer of a direct methanol fuel cell. The model accounts for fundamental mass transfer phenomena at steady state, including convective transport in the anode flow channel, as well as diffusion and electro-osmotic drag transport across the polymer electrolyte membrane. Experimental measurements of methanol crossover current density are used to identify five modeling parameters according to a systematic parameter estimation methodology. A validation study shows that the model matches the experimental data well, and the usefulness of the model is illustrated through the analysis of effects such as the choice fuel flow rate in the anode flow channel and the presence of carbon-dioxide bubbles.  相似文献   

11.
A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH3OH solution is about 11.48 mW cm−2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.  相似文献   

12.
Mordenite (MOR)/PTFE Nafion composite membranes were produced by impregnating Nafion solutions in a PTFE porous support with a modified form of MOR. A 3-mercaptopropyl triethoxysilane (MPTES) - MOR mixture is used as a filler in the PTFE Nafion membrane to block methanol crossover and increase water uptake. An experiment was conducted with a membrane without M-MOR (PTFE Nafion membrane) and a membrane with M-MOR at 2, 4, and 10 wt% (2-, 4-, and 10-M-MOR/PTFE Nafion membranes, respectively). In order to improve the interfacial properties, surface modification of the zeolite was conducted with a silane coupling reaction. The MOR samples were analyzed by SEM, SEM-EDS, and BET surface area analysis. The Nafion membrane was analyzed by SEM, according to the water uptake, and by an electrochemical analysis. The 10-M-MOR/PTFE Nafion membrane showed greater water uptake of 75% compared to the PTFE Nafion membrane without M-MOR (28%). It was found that the addition of MOR had a positive effect on the reduction of the methanol permeability of the MOR/PTFE Nafion membrane. The DMFC (Direct Methanol Fuel Cell) power density of MEA with the 4-M-MOR/PTFE Nafion membrane (4-M-MOR MEA) was found to be 71% higher than that of the PTFE Nafion membrane (0-M-MOR MEA).  相似文献   

13.
Adequate control over the concentration of methanol is critically needed in operating direct methanol fuel cell (DMFC) systems, because performance and energy efficiency of the systems are primarily dependent on the concentration of methanol feed. For this purpose, we have built a sensor-less control logic that can operate based on the estimation of the rates of methanol consumption in a DMFC. The rates of methanol consumption are measured in a cell and the resulting data are fed as an input to the control program to calculate the amount of methanol required to maintain the concentration of methanol at a set value under the given operating conditions of a cell. The sensor-less control has been applied to a DMFC system employed with a large-size single cell and the concentration of methanol is found to be controlled stably to target concentrations even though there are some deviations from the target values.  相似文献   

14.
Nafion 117 membranes were modified by in situ chemical polymerization of 3,4-ethylenedioxythiophene using H2O2 as oxidant for direct methanol fuel cell application. Methanol permeability and proton conductivity of the poly(3,4-ethylenedioxythiophene)-modified Nafion membranes as a function of temperature were investigated. An Arrhenius-type dependency of methanol permeability and proton conductivity on temperature exists for all the modified membranes. Compared with Nafion 117 membrane at 60 °C, the methanol permeability of these modified membranes is reduced from 30% to 72%, while the proton conductivity is decreased from 4% to 58%, respectively. Because of low methanol permeability and adequate proton conductivity, the DMFC performances of these modified membranes were better than that of Nafion 117 membrane. A maximum power density of 48.4 mW cm−2 was obtained for the modified membrane, while under same condition Nafion 117 membrane got 37 mW cm−2.  相似文献   

15.
This report details development of an air-breathing direct methanol alkaline fuel cell with an anion-exchange membrane. The commercially available anion-exchange membrane used in the fuel cell was first electrochemically characterized by measuring its ionic conductivity, and showed a promising result of 1.0 × 10−1 S cm−1 in a 5 M KOH solution. A laboratory-scale direct methanol fuel cell using the alkaline membrane was then assembled to demonstrate the feasibility of the system. A high open-circuit voltage of 700 mV was obtained for the air-breathing alkaline membrane direct methanol fuel cell (AMDMFC), a result about 100 mV higher than that obtained for the air-breathing DMFC using a proton exchange membrane. Polarization measurement revealed that the power densities for the AMDMFC are strongly dependent on the methanol concentration and reach a maximum value of 12.8 mW cm−2 at 0.3 V with a 7 M methanol concentration. A durability test for the air-breathing AMDMFC was performed in chronoamperometry mode (0.3 V), and the decay rate was approximately 0.056 mA cm−2 h−1 over 160 h of operation. The cell area resistance for the air-breathing AMDMFC was around 1.3 Ω cm2 in the open-circuit voltage (OCV) mode and then is stably supported around 0.8 Ω cm2 in constant voltage (0.3 V) mode.  相似文献   

16.
This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30–40 °C) and high temperatures (100–120 °C). DMFC power densities were about 140 mW cm−2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm−2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm−2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.  相似文献   

17.
We investigated the effect of the conditioning methods on improving the direct methanol fuel cell (DMFC) performance. The DMFC performance after the conditioning was measured using a newly developed single cell having an Ag/Ag2SO4 reference electrode, which is not influenced by methanol. As a result, we succeeded in developing an original two-step conditioning method in which the conditioning by fueling H2 gas is conducted prior to a conventional DMFC conditioning. The anode and cathode characteristics after the two-step conditioning were measured with respect to a reference electrode. Based on the obtained i-E curves, the two-step conditioning is found to improve the methanol oxidation performance at the anode and also suppress the decline of the O2 reduction performance at the cathode. The high DMFC performance based on the two-step conditioning is well explained by the anode and cathode characteristics.  相似文献   

18.
A mathematical model for simulating methanol permeation and the pertinent mixed potential effect in a direct methanol fuel cell (DMFC) is presented. In this model a DMFC is divided into seven compartments namely the anodic flow channel, the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer, the cathodic diffusion layer and the cathodic flow channel. All compartments are considered to have finite thickness, and within every one of them a set of governing equations are given to stipulate methanol transport and oxygen transport. For the flow channels, fluid dynamics, which could substantially lower the local methanol concentration within catalyst layers is taken into account. With the knowledge of local concentrations of the species, the electrochemical reaction rates within both catalyst layers can be quantified by a kinetic Tafel expression. For the anodic catalyst layer the local external current generated by methanol oxidation is computed; for the cathodic catalyst layer, in addition to the local external current generated by oxygen reduction, the local internal current as a result of methanol permeation is also computed. With the information of the local internal current, the mixed potential effect, which is responsible for adversely lowering the cell voltage can be analyzed.  相似文献   

19.
A new type of composite membrane, consisting of functionalized carbon nanotubes (CNTs) and sulfonated poly(arylene sulfone) (sPAS), is prepared for direct methanol fuel cell (DMFC) applications. The CNTs modified with sulfonic acid or PtRu nanopaticles are dispersed within the sPAS matrix by a solution casting method to afford SO3CNT-sPAS or PtRu/CNT-sPAS composite membranes, respectively. Characterization of the composite membranes reveals that the functionalized CNTs are homogeneously distributed within the sPAS matrix and the composite membranes contain smaller ion clusters than the neat sPAS. The composite membranes exhibit enhanced mechanical properties in terms of tensile strength, strain and toughness, which leads to improvements in ion conductivity and methanol permeability compared with the neat sPAS membrane. In DMFC performance tests, the use of a PtRu/CNT-sPAS membrane yields high power density compared with the neat sPAS membrane, which demonstrates that the improved properties of the composite membranes induce an increase in power density. The strategy for CNT-sPAS composite membranes presented in this work can potentially be extended to other CNT-polymer composite systems.  相似文献   

20.
A series of organic silica/Nafion composite membranes has been prepared by using organic silane coupling agents (SCA) bearing different hydrophilic functional groups. The physico-chemical properties of the composite membranes have been characterized by electrochemical techniques, scanning electron microscopy (SEM), diffuse-reflection Fourier-transform infrared spectroscopy (DRFTIR), wide-angle X-ray diffraction (WAXRD), thermogravimetric analysis (TGA), and thermogravimetric mass spectrometry (TG-MS). It has been found that some organic silica/Nafion composite membranes modified by organic silane agents bearing amino groups exhibit extremely low methanol crossover and proton conductivity values, e.g., a composite membrane shows a proton conductivity that is about five orders of magnitude lower and a methanol permeability that is about three orders of magnitude lower than those of a Nafion117 membrane. However, under optimized conditions for controlling the basicity of the amino groups, we also obtained a composite membrane with 89% lower methanol permeability and 49% lower proton conductivity compared with Nafion117 membrane. The results clearly demonstrate that the diffusion of methanol and protons through the membrane can be controlled by adjusting the functional groups on the organic silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号