共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(29):14661-14670
Pretreatment of biomass is a commonly applied technique for improving its biodegradability; however, such methods are energy intensive, which affects the overall efficiency. This study aims to provide an energy efficient solution by combining microwave (MW) pretreatment of algal biomass (Enteromorpha) and metal nanoparticles (NPs). The MW pretreatment of the biomass was in the form of a slurry (liquid:solid 20:1), while pretreatment time and MW pretreatment power were 6min and 600 W, respectively. Nickel (Ni) and Cobalt (Co) NPs with a concentration of 1 mg/L were used. Batch-wise anaerobic digestion was carried out for a period of 264 h. The results showed that MW pretreatment initiates early hydrolysis of green algae thus reducing lag time. NPs had a positive influence in biogas production at the later stages of anaerobic digestion. The highest total biogas production of 53.60ml/gTS was attained by Co NPs + MW pretreatment whereas maximum biohydrogen of 59.52% (v/v) was produced by Ni NPs + MW pretreatment group. Energy analysis showed that combined utilization of MW pretreatment and metal NPs produced added energy while consuming less input energy than MW pretreatment alone. The kinetic parameters were calculated by using modified Gompertz and Logistic function model for each experimental case. 相似文献
2.
3.
Alyona Zubaryeva Nicola ZaccarelliCecilia Del Giudice Giovanni Zurlini 《Renewable Energy》2012,39(1):261-270
Renewable energies, especially energy from biomass, contribute to the sustainable development of the territory. Simultaneously, by using biomass to produce bioenergy, bioreproductive land is devoted to supply energy. As the bioreproductive land area on the European level is decreasing, bioenergy competes against other demands like the production of food, industrial resources or cultural goods and services, among others, thus the correct assessment of the available local potential is important for local and regional planning. Moreover, bioenergy system being a socio-ecological system requires integrated approaches for the evaluation of the factors, components and interactions of such a system, considering that agriculture presents one of the major drivers of the land use change and biodiversity loss. Therefore, this work was focused on the development of the approach for and on the assessment of biogas potentials to provide a support for decision-makers and bioenergy industry at a local scale. The approach exploits the spatial relations among territorial units (i.e., a contiguity analysis), and integrates time series of continuous and discrete data. It is based on the analytic hierarchy process (AHP) combined with GIS-based analysis, and permitted to develop a territorial information system in support for biogas planning, perform analysis of feedstock for biogas from different sources potential and produce plausible scenarios for identification of biogas suitable territorial clusters; the analysis of the tradeoffs between the use of different local sources of the feedstock for biogas production are discussed as well. 相似文献
4.
When treating municipal wastewater, the disposal of sludge is a problem of growing importance, representing up to 50% of the current operating costs of a wastewater treatment plant. Although different disposal routes are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into biogas (60–70 vol% of methane, CH4), as thereby it also reduces the amount of final sludge solids for disposal whilst destroying most of the pathogens present in the sludge and limiting odour problems associated with residual putrescible matter. Anaerobic digestion thus optimises WWTP costs, its environmental footprint and is considered a major and essential part of a modern WWTP. The potential of using the biogas as energy source has long been widely recognised and current techniques are being developed to upgrade quality and to enhance energy use. The present paper extensively reviews the principles of anaerobic digestion, the process parameters and their interaction, the design methods, the biogas utilisation, the possible problems and potential pro-active cures, and the recent developments to reduce the impact of the problems. After having reviewed the basic principles and techniques of the anaerobic digestion process, modelling concepts will be assessed to delineate the dominant parameters. Hydrolysis is recognised as rate-limiting step in the complex digestion process. The microbiology of anaerobic digestion is complex and delicate, involving several bacterial groups, each of them having their own optimum working conditions. As will be shown, these groups are sensitive to and possibly inhibited by several process parameters such as pH, alkalinity, concentration of free ammonia, hydrogen, sodium, potassium, heavy metals, volatile fatty acids and others. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilising intracellular material into the water phase and transforming refractory organic material into biodegradable species. Possible techniques to upgrade the biogas formed by removing CO2, H2S and excess moisture will be summarised. Special attention will be paid to the problems associated with siloxanes (SX) possibly present in the sludge and biogas, together with the techniques to either reduce their concentration in sludge by preventive actions such as peroxidation, or eliminate the SX from the biogas by adsorption or other techniques. The reader will finally be guided to extensive publications concerning the operation, control, maintenance and troubleshooting of anaerobic digestion plants. 相似文献
5.
To fully model the anaerobic digestion process, biological and physico-chemical background, the kinetics of bacterial growth, substrate degradation and product formation have to be taken into account. The presented approaches differ depending on the requirements and the developer of the model. Important parameters affecting the process such as temperature, which can cause great inaccuracy, are rarely included in the models. Simple calculators are also available that estimate the applicability of the process to a specific farm and provide information to a farmer or a decision maker. Six simple calculators are presented in this study: AD decision support software, Anaerobic Digestion Economic Assessment Tool, BEAT2, BioGC, FarmWare and GasTheo. The simpler calculators mainly use the relation that exists between volatile solids and biogas production. A tested case of 100 dairy cows and 50 sows was applied to the simple calculators to compare the results. 相似文献
6.
Spectacular applications of anaerobic membrane bioreactors (AnMBRs) are emerging due to the membrane enhanced biogas production in the form of renewable bioresources. They produce similar energy derived from the world's depleting natural fossil energy sources while minimizing greenhouse gas (GHG) emissions. During the last decade, many types of AnMBRs have been developed and applied so as to make biogas technology practical and economically viable. Referring to both conventional and advanced configurations, this review presents a comprehensive summary of AnMBRs for biogas production in recent years. The potential of biogas production from AnMBRs cannot be fully exploited, since certain constraints still remain and these cause low methane yield. This paper addresses a detailed assessment on the potential challenges that AnMBRs are encountering, with a major focus on many inhibitory substances and operational dilemmas. The aim is to provide a solid platform for advances in novel AnMBRs applications for optimized biogas production. 相似文献
7.
V. K. Sharma C. Testa G. Lastella G. Cornacchia M. P. Comparato 《Applied Energy》2000,65(1-4):173-185
Preliminary experimental results obtained from the treatment of semi-solid wastes generated from wholesale fruit and vegetable markets, supermarkets, etc. mixed together with sewage sludge, are reported. 相似文献
8.
Microalgae grown in swine wastewater were used as a promising strategy to produce renewable energy by coupling wastewater bioremediation and biomass revalorization. The efficiency of a microalgae consortium treating swine slurry at different temperature (15 and 23 °C) and illumination periods (11 and 14 h) was assessed for biomass growth and nutrient removal at two NH4+ initial concentrations (80 and 250 mg L−1 NH4+). Favourable culture conditions (23 °C and 14 h of illumination) and high ammonium loads resulted in higher biomass production and greater nutrients removal rates. The initial N–NH4+ load determined the removal mechanism, thus ammonia stripping and nitrogen uptake accounted similarly in the case of high NH4+ load, while nitrogen uptake prevailed at low NH4+ load. Under favourable conditions, nitrogen availability in the media determined the composition of the biomass. In this context, carbohydrate-rich biomass was obtained in batch mode while semi-continuous operation resulted in protein-rich biomass. The revalorization of the resultant biomass was evaluated for biogas production. Methane yields in the range of 106–146 and 171 ml CH4 g COD−1 were obtained for the biomasses grown in batch and semi-continuous mode, respectively. Biomass grown under favourable conditions resulted in higher methane yields and closer to the theoretically achievable. 相似文献
9.
Kevin G. Wilkinson 《Biomass & bioenergy》2011,35(5):1613-1622
This review examines the drivers behind the adoption of on-farm anaerobic digestion in Germany where there were more than 4000 plants operating in 2009. In Australia, only one plant is operating, at a piggery in the State of Victoria. Germany’s generous feed-in-tariffs for renewable energy are typically given the credit for promoting investment in on-farm anaerobic digestion. But the particular biophysical and socio-economic character of farming in the country provided the fertile ground for these financial incentives to take root. Energy security has also been a major driver for the promotion of renewable energy in Germany since it imports over 60% of its energy needs. In contrast, Australia is a net energy exporter, exporting about two-thirds of its domestic energy. Although it has considerable potential for application in Australia, anaerobic digestion is unlikely to be widely adopted unless new incentives emerge to strongly encourage investment. Stronger Australian regulation of manures and effluent may serve as an incentive to a limited extent in the future. Yet the experience in Germany suggests that regulation on its own was not sufficient to encourage large numbers of farmers to invest in anaerobic digestion. Even with generous incentives from the German government, increasing construction costs and the rising cost of energy crops can put the financial viability of anaerobic digestion plants at risk. Unless improvements in efficiency are found and implemented, these pressures could lead to unsustainable rises in the cost of the incentive schemes that underpin the development of renewable energy technologies. 相似文献
10.
《Renewable Energy》2003,28(14):2255-2267
The heating requirements of the thermophilic anaerobic digestion process were studied. Biogas production was studied in laboratory experiments at retention times from 1 to 10 days. The data gathered in the experiments was then used to perform a heat and energy analysis. The source of heat was a conventional CHP unit system. The results showed that thermophilic digestion is much faster than mesophilic digestion and therefore produces more biogas in a shorter time or at smaller digester volumes. The major part of the heating requirements consisted of sludge heating. The heat losses of the digester were only 2–8% of the sludge heating requirements. The heating requirements in thermophilic digestion are about twice those of mesophilic digestion. Therefore a CHP unit system cannot cover all of the needs for successful operation of thermophilic digestion. Heat regeneration was introduced as a solution. Heat is regenerated from the sludge outflow at a temperature of 50–55 °C and transferred to the cold inflow sludge at a temperature of 11 °C. Enough heat is regenerated in a conventional counter flow heat exchanger to bring the thermophilic process to the same level as the mesophilic one. Considering the smaller digester volumes and the relatively small investment in the regenerative equipment, the construction of thermophilic digestion systems may be a very good alternative to conventional mesophilic sludge digestion systems. 相似文献
11.
Xue Li Sining Yun Chen Zhang Wen Fang Xinlei Huang Tingting Du 《International Journal of Hydrogen Energy》2018,43(3):1926-1936
Four types of nano-scale transition metal carbides (HfC, SiC, TiC, and WC), used as accelerants in anaerobic digestion (AD) with cattle manure, were investigated through batch experiments under mesophilic conditions (37 ± 1 °C). The AD system with four carbide accelerants showed a higher biogas yield (463–499 mL/g TS), chemical oxygen demand (COD) degradation rate (58.62–78.90%) and total Kjeldahl nitrogen (TKN) concentrations (905.0–1077.0 mg/L) as compared with control check (CK, 294 mL/g TS, 46.99%, 290 mg/L). All of the digestate samples from the AD systems using four carbide accelerants showed not only higher degradation of organic compounds during thermal analysis, but also stronger fertilizer values. The use of transition metal compounds (TMCs) as accelerants in AD can efficiently improve the conversion of waste resources into biogas and fertilizers, which can potentially open new avenues for the use of TMCs in upcoming research on biomass energy. 相似文献
12.
Anaerobic digestion (AD) is a biological process that can convert organic substrates to biogas in the absence of oxygen. The AD process has been practiced for centuries; however, it is still a research focus in contemporary literature. This mini-review selected papers published in 2015 and summarized the improvement and technological advancement and revealing current research and development trends for the biogas from AD process. A discussion on the challenges and prospects for developing improved AD technologies is provided. 相似文献
13.
Anaerobic co-digestions with fat, oil and grease (FOG) were investigated in two-stage thermophilic (55 °C) semi-continuous flow co-digestion systems. One two-stage co-digestion system (System I) was modified to incorporate a thermo-chemical pre-treatment of pH = 10 at 55 °C, which was the best pre-treatment condition for FOG co-digestion identified during laboratory-scale biochemical methane potential (BMP) testing. The other two-stage co-digestion system (System II) was operated without a pre-treatment process. The anaerobic digester of each digestion system had a hydraulic retention time (HRT) of 24 days. An organic loading rate (OLR) of 1.83 ± 0.09 g TVS/L·d was applied to each digestion system. It was found that System I effectively enhanced biogas production as the thermo-chemical pre-treatment improved the substrate hydrolysis including increased COD solubilization and VFA concentrations. Overall, the modified System I yielded a 25.14 ± 2.14 L/d biogas production rate, which was substantially higher than the 18.73 ± 1.11 L/d obtained in the System II. 相似文献
14.
Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane 总被引:3,自引:0,他引:3
The availability of trace metals as micro-nutrients plays a very significant role on the performance and stability of agricultural biogas digesters, which are operated with energy crops, animal excreta, crop residues, organic fraction of municipal solid wastes or any other type of organic waste. The unavailability of these elements in biogas digesters is probably the first reason of poor process efficiency without any other obvious reason, despite proper management and control of other operational and environmental parameters. However, trace metal requirements of biogas digesters operated with solid biomass are not often reported in literature. Therefore, the aim of this article is to review the previous and current literature about the trace metal requirements of anaerobic biogas digesters operated with solid organic substrates for production of methane. 相似文献
15.
Modeling the performance of the anaerobic phased solids digester system for biogas energy production
A process model was developed to predict the mass and energy balance for a full-scale (115 t d−1) high-solids anaerobic digester using research data from lab and pilot scale (1-3000 kg d−1 wet waste) systems. Costs and revenues were estimated in consultation with industry partners and the 20-year project cash flow, net present worth (NPW), simple payback, internal rate of return, and revenue requirements were calculated. The NPW was used to compare scenarios in order to determine the financial viability of using a generator for heat and electricity or a pressure swing adsorption unit for converting biogas to compressed natural gas (CNG).The full-scale digester consisted of five 786 m3 reactors (one biogasification reactor and four hydrolysis reactors) treating a 50:50 mix (volatile solids basis) of food and green waste, of which 17% became biogas, 32% residual solids, and 51% wastewater. The NPW of the projects were similar whether producing electricity or CNG, as long as the parasitic energy demand was satisfied with the biogas produced. When producing electricity only, the power output was 1.2 MW, 7% of which was consumed parasitically. When producing CNG, the system produced 2 hm3 y−1 natural gas after converting 22% of the biogas to heat and electricity which supplied the parasitic energy demand. The digester system was financially viable whether producing electricity or CNG for discount rates of up to 13% y−1 without considering debt (all capital was considered equity), heat sales, feed-in tariffs or tax credits. 相似文献
16.
Anaerobic digestion is one of the major steps involved in the treatment of dairy industry waste-waters and many CSTRs (continuously-stirred tank reactors) are functioning for this purpose all over the world. In this paper, the authors describe their attempts to upgrade a CSTR's performance by incorporating a biofilm support system (BSS) within the existing reactor. The focus of the work was to find an inexpensive and easy to install BSS which could significantly enhance the rates of waste treatment and methane recovery. Rolls of nylon mesh (with 1 mm openings), of 5 cm height and 2 cm dia, when incorporated in the CSTR at the biofilm surface (with a digester volume ratio 0.3 cm2/cm3), enabled the CSTR to perform better with > 20% improvement in the methane yield. Such simple BSS devices can significantly improve the performance of a CSTR anaerobic digester treating dairy wastes. The enhancement is due to the development of active biofilms which not only enhance the microorganism-waste contact but also reduce the microbial washout. Such devices are inexpensive and very easy to incorporate — the gains are thus achieved with very little cost and effort. 相似文献
17.
18.
Anaerobic digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL) was studied in completely stirred tank reactors (CSTR) at 37 ± 2 °C. This work focused on the effect of increased organic loading rate (OLR) on the methane production in long-term experiments. For OLR in the range of (1.5-5.0) kg m−3 d−1 based on VS fed, VFA and SCOD concentrations decreased for the first 10 days and then kept stable at about 2.3 kg m−3 and 4.0 kg m−3 respectively until to the critical OLR of 5.0 kg m−3 d−1; and the methane generation rate enhanced to 0.838 m3 m−3 d−1 during this period until to the reactor failure. Additionally, reaction rate constant k and sludge retention time (SRT) are described on the basis of a mass balance in a CSTR followed a first order kinetic equation. In the present study, values for ym and k were obtained as 0.733 m3 kg−1 of removed VS and 0.07 d−1, respectively. The simple model can apply for dimensioning a CSTR digesting of organic wastes from pulp and paper industries, food processing industries, sewage treatment plants or biogas crops. 相似文献
19.
Nusara Sinbuathong Boonsong Sillapacharoenkul 《International Journal of Hydrogen Energy》2021,46(6):4870-4878
This study investigates enhancing the biogas production of sunnhemp by pretreatment, before the anaerobic digestion and co-digestion processes, to address the complex and recalcitrant structure of the plant. Fresh sunnhemp harvested at a cutting interval of 50 days is used in the study. Five systems (each with a 5 litre useable volume) are operated semi-continuously with five different ratios of the feedstock by feeding separate feedstocks every five days with a hydraulic retention time (HRT) of 40 days. The system operates at room temperature (30 °C). The study uses sunnhemp as 20% of the feedstock and also considers sunnhemp mixed with cow manure at different ratios, with the weighed sunnhemp being pretreated with dilute sodium hydroxide. Pretreatment of sunnhemp before digestion produces a methane (CH4) yield 89% greater than that of the untreated sunnhemp. It requires 3.597 kg of dry sunnhemp to produce 1 m3 of CH4 and the annual CH4 yield per hectare is 19,015 m3. In the pretreatment of sunnhemp before co-digestion, the increased CH4 yield depends on the amount of pretreated sunnhemp in the feedstocks. However, the %CH4, the CH4 production level and the system stability depend on the optimal ratio of the sunnhemp to cow manure. The initially prepared sunnhemp to cow manure ratio is recommended at 10 g:10 g in 80 mL of water. At this ratio, the %CH4 and the CH4 yield are 53.84% and 313 kg chemical oxygen demand (COD) removed, respectively, and the COD removal efficiency is 56.4%. Sunnhemp has high potential and it is worth pretreating before producing biogas. Using sunnhemp to produce biogas is recommended to decrease greenhouse gas emissions and mitigate global warming. 相似文献
20.
Devaraj Thiruselvi Ponnusamy Senthil Kumar Madhava Anil Kumar Chyi-How Lay Salma Aathika Yuvarani Mani D. Jagadiswary Anuradha Dhanasekaran Palaniyandi Shanmugam Subramanian Sivanesan Pau-Loke Show 《International Journal of Hydrogen Energy》2021,46(31):16734-16750
Renewable biogas production technology is an excellent method for eradication of greenhouse gas emission and thereby reducing global warming. This review discusses extensively on global biomass potential, energy need and method of satisfying the energy demand through sustainable techniques. One of the best alternative technological developments for the conversion of waste into useful energy is anaerobic digestion to produce biogas. It is recognized as one among leading green energy to manage the environmental and meet the current energy tasks to tackle globally. Generally, biogas can be utilized for cooking, heat and electricity generation. In order to extend the scope of application, traces of carbon dioxide, hydrogen sulphide has to be removed by several upgrading technologies to produce high purity methane (90%). This study discusses on biogas up-gradation using physical and chemical absorption, membrane separation, cryogenic separation, hybrid technology etc. Among the various up-gradation techniques, hybrid technology yields methane purity of 97%. In addition, this work reviews about benefits and problems in anaerobic integrated Solid Oxide Fuel Cell (SOFC) with latest real-world achievement in SOFC. Several SOFC systems with dynamic model development were reviewed based on efficiency of power generation. SOFC generates 45% more electricity than generator with heat engine. This review extends the scope for further research in biogas upgradation and global warming mitigation potential with carbon credits. 相似文献