首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Networks provide a significant function in everyday life, and cybersecurity therefore developed a critical field of study. The Intrusion detection system (IDS) becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network. Notwithstanding advancements of growth, current intrusion detection systems also experience dif- ficulties in enhancing detection precision, growing false alarm levels and identifying suspicious activities. In order to address above mentioned issues, several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches. Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency. Artificial intelligence, particularly machine learning methods can be used to develop an intelligent intrusion detection framework. There in this article in order to achieve this objective, we propose an intrusion detection system focused on a Deep extreme learning machine (DELM) which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features. In the moment, we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability. The experimental results illustrate that the suggested framework outclasses traditional algorithms. In fact, the suggested framework is not only of interest to scientific research but also of functional importance.  相似文献   

2.
CAD/CAE模型转换,其关键在于如何将模型分解为最简单元,这些单元往往具有相近的网格划分属性,可以方便估计计算误差和计算时间。基于此提出了基于图分解的特征识别算法,对属性邻接图进行分解,根据分解后的属性邻接图中的连通分量生成体特征。该算法不再局限于特征类型,只要合理控制顶点的可分解性判断就可以得到期望的模型分解结果;同时该算法可以获得体特征,使得可以在特征这一粒度上进行特征删除和替换,以方便地完成模型的简化。  相似文献   

3.
基于交叉验证SVM的网络入侵检测   总被引:1,自引:0,他引:1  
针对传统入侵检测系统漏报率和误报率高的问题,将支持向量机(SVM)应用于入侵检测中,提出了在SVM学习过程中引入交叉验证的方法,采用径向基函数(RBF)作为核,将训练集分成若干子集,每一子集使用其它子集训练得到的分类器进行测试,获得RBF的两个最佳参数后,将其应用于最终的分类器.实验结果表明,该方法能够有效检测入侵攻击,具有更高的检测率和更强的泛化能力,同时具有较低的误报率和漏报率,可以有效地运用于入侵检测系统中.  相似文献   

4.
In network-based intrusion detection practices, there are more regular instances than intrusion instances. Because there is always a statistical imbalance in the instances, it is difficult to train the intrusion detection system effectively. In this work, we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances. Our technique mitigates the statistical imbalance in these instances. We also carried out an experiment on the training model by increasing the instances, thereby increasing the attack instances step by step up to 13 levels. The experiments included not only known attacks, but also unknown new intrusions. The results are compared with the existing studies from the literature, and show an improvement in accuracy, sensitivity, and specificity over previous studies. The detection rates for the remote-to-user (R2L) and user-to-root (U2L) categories are improved significantly by adding fewer instances. The detection of many intrusions is increased from a very low to a very high detection rate. The detection of newer attacks that had not been used in training improved from 9% to 12%. This study has practical applications in network administration to protect from known and unknown attacks. If network administrators are running out of instances for some attacks, they can increase the number of instances with rarely appearing instances, thereby improving the detection of both known and unknown new attacks.  相似文献   

5.
In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder (DAE) for learning the robust feature representation and one-class support vector machine (OCSVM) for finding the more compact decision hyperplane for intrusion detection. Specially, the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously. This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection. Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model. First, the ablation evaluation on benchmark dataset, NSL-KDD validates the design decision of the proposed model. Next, the performance evaluation on recent intrusion dataset, UNSW-NB15 signifies the stable performance of the proposed model. Finally, the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods.  相似文献   

6.
圆角特征的识别和抑制是模型特征识别的第一步,能够有效地降低模型的复杂度,提高后续特征识别的准确性和效率。提出一种基于面边图的圆角特征识别和抑制算法,根据三维模型建立面边图,使圆角特征的识别转化为在面边图中寻找割点或割集的过程,从而实现对圆角特征的识别和抑制。该算法稳定有效,并已得到验证。  相似文献   

7.
Edge detection is one of the core steps of image processing and computer vision. Accurate and fine image edge will make further target detection and semantic segmentation more effective. Holistically-Nested edge detection (HED) edge detection network has been proved to be a deep-learning network with better performance for edge detection. However, it is found that when the HED network is used in overlapping complex multi-edge scenarios for automatic object identification. There will be detected edge incomplete, not smooth and other problems. To solve these problems, an image edge detection algorithm based on improved HED and feature fusion is proposed. On the one hand, features are extracted using the improved HED network: the HED convolution layer is improved. The residual variable convolution block is used to replace the normal convolution enhancement model to extract features from edges of different sizes and shapes. Meanwhile, the empty convolution is used to replace the original pooling layer to expand the receptive field and retain more global information to obtain comprehensive feature information. On the other hand, edges are extracted using Otsu algorithm: Otsu-Canny algorithm is used to adaptively adjust the threshold value in the global scene to achieve the edge detection under the optimal threshold value. Finally, the edge extracted by improved HED network and Otsu-Canny algorithm is fused to obtain the final edge. Experimental results show that on the Berkeley University Data Set (BSDS500) the optimal data set size (ODS) F-measure of the proposed algorithm is 0.793; the average precision (AP) of the algorithm is 0.849; detection speed can reach more than 25 frames per second (FPS), which confirms the effectiveness of the proposed method.  相似文献   

8.
Software-defined networking (SDN) represents a paradigm shift in network traffic management. It distinguishes between the data and control planes. APIs are then used to communicate between these planes. The controller is central to the management of an SDN network and is subject to security concerns. This research shows how a deep learning algorithm can detect intrusions in SDN-based IoT networks. Overfitting, low accuracy, and efficient feature selection is all discussed. We propose a hybrid machine learning-based approach based on Random Forest and Long Short-Term Memory (LSTM). In this study, a new dataset based specifically on Software Defined Networks is used in SDN. To obtain the best and most relevant features, a feature selection technique is used. Several experiments have revealed that the proposed solution is a superior method for detecting flow-based anomalies. The performance of our proposed model is also measured in terms of accuracy, recall, and precision. F1 rating and detection time Furthermore, a lightweight model for training is proposed, which selects fewer features while maintaining the model’s performance. Experiments show that the adopted methodology outperforms existing models.  相似文献   

9.
In recent years, progressive developments have been observed in recent technologies and the production cost has been continuously decreasing. In such scenario, Internet of Things (IoT) network which is comprised of a set of Unmanned Aerial Vehicles (UAV), has received more attention from civilian to military applications. But network security poses a serious challenge to UAV networks whereas the intrusion detection system (IDS) is found to be an effective process to secure the UAV networks. Classical IDSs are not adequate to handle the latest computer networks that possess maximum bandwidth and data traffic. In order to improve the detection performance and reduce the false alarms generated by IDS, several researchers have employed Machine Learning (ML) and Deep Learning (DL) algorithms to address the intrusion detection problem. In this view, the current research article presents a deep reinforcement learning technique, optimized by Black Widow Optimization (DRL-BWO) algorithm, for UAV networks. In addition, DRL involves an improved reinforcement learning-based Deep Belief Network (DBN) for intrusion detection. For parameter optimization of DRL technique, BWO algorithm is applied. It helps in improving the intrusion detection performance of UAV networks. An extensive set of experimental analysis was performed to highlight the supremacy of the proposed model. From the simulation values, it is evident that the proposed method is appropriate as it attained high precision, recall, F-measure, and accuracy values such as 0.985, 0.993, 0.988, and 0.989 respectively.  相似文献   

10.
Intrusion detection is a serious and complex problem. Undoubtedly due to a large number of attacks around the world, the concept of intrusion detection has become very important. This research proposes a multilayer bio-inspired feature selection model for intrusion detection using an optimized genetic algorithm. Furthermore, the proposed multilayer model consists of two layers (layers 1 and 2). At layer 1, three algorithms are used for the feature selection. The algorithms used are Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Firefly Optimization Algorithm (FFA). At the end of layer 1, a priority value will be assigned for each feature set. At layer 2 of the proposed model, the Optimized Genetic Algorithm (GA) is used to select one feature set based on the priority value. Modifications are done on standard GA to perform optimization and to fit the proposed model. The Optimized GA is used in the training phase to assign a priority value for each feature set. Also, the priority values are categorized into three categories: high, medium, and low. Besides, the Optimized GA is used in the testing phase to select a feature set based on its priority. The feature set with a high priority will be given a high priority to be selected. At the end of phase 2, an update for feature set priority may occur based on the selected features priority and the calculated F-Measures. The proposed model can learn and modify feature sets priority, which will be reflected in selecting features. For evaluation purposes, two well-known datasets are used in these experiments. The first dataset is UNSW-NB15, the other dataset is the NSL-KDD. Several evaluation criteria are used, such as precision, recall, and F-Measure. The experiments in this research suggest that the proposed model has a powerful and promising mechanism for the intrusion detection system.  相似文献   

11.
为了提高目标检测的准确性,提出了一种基于深度学习利用特征图加权融合实现目标检测的方法。首先,提出将卷积神经网络中的浅层特征图采样后与最深层特征图进行加权融合的思想;其次,根据所提的特征图加权融合思想以及卷积神经网络的具体结构,制定相应的特征图加权融合方案,并由该方案得到新特征图;然后,提出改进的RPN网络,并将新特征图输入到改进的RPN网络得到区域建议;最后,将新特征图和区域建议输入到后续网络层完成目标检测。实验结果表明所提方法取得了更高的目标检测精度以及更好的目标检测效果。  相似文献   

12.
With the advancement of network communication technology, network traffic shows explosive growth. Consequently, network attacks occur frequently. Network intrusion detection systems are still the primary means of detecting attacks. However, two challenges continue to stymie the development of a viable network intrusion detection system: imbalanced training data and new undiscovered attacks. Therefore, this study proposes a unique deep learning-based intrusion detection method. We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data. Then the original data is fed into the triplet network by forming a triplet with the data reconstructed from the two encoders to train. Finally, the distance relationship between the triples determines whether the traffic is an attack. In addition, to improve the accuracy of detecting unknown attacks, this research proposes an improved triplet loss function that is used to pull the distances of the same class closer while pushing the distances belonging to different classes farther in the learned feature space. The proposed approach’s effectiveness, stability, and significance are evaluated against advanced models on the Android Adware and General Malware Dataset (AAGM17), Knowledge Discovery and Data Mining Cup 1999 (KDDCUP99), Canadian Institute for Cybersecurity Group’s Intrusion Detection Evaluation Dataset (CICIDS2017), UNSW-NB15, Network Security Lab-Knowledge Discovery and Data Mining (NSL-KDD) datasets. The achieved results confirmed the superiority of the proposed method for the task of network intrusion detection.  相似文献   

13.
Due to the widespread use of the internet and smart devices, various attacks like intrusion, zero-day, Malware, and security breaches are a constant threat to any organization's network infrastructure. Thus, a Network Intrusion Detection System (NIDS) is required to detect attacks in network traffic. This paper proposes a new hybrid method for intrusion detection and attack categorization. The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization. In the first step, the dataset is preprocessed through the data transformation technique and min-max method. Secondly, the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model's performance. Next, we use various Support Vector Machine (SVM) types to detect intrusion and the Adaptive Neuro-Fuzzy System (ANFIS) to categorize probe, U2R, R2U, and DDOS attacks. The validation of the proposed method is calculated through Fine Gaussian SVM (FGSVM), which is 99.3% for the binary class. Mean Square Error (MSE) is reported as 0.084964 for training data, 0.0855203 for testing, and 0.084964 to validate multiclass categorization.  相似文献   

14.
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous detection model that dynamically trains small subsets to these issues. First, this research introduces a deep neural network (DNN)-based GANomaly for semi-supervised learning. Second, this paper presents the proposed adaptive algorithm for the DNN-based GANomaly, which is validated with four subsets of the adaptive dataset. Finally, this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations, reconstruction error visualization, and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage, semi-supervised learning, and adaptive learning. Compared to other single-class classification techniques, the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13% and 8% of F1 scores and 4.17% and 11.51% for accuracy, respectively. Furthermore, experiments of the proposed adaptive learning reveal mostly improved results over the initial values. An analysis and monitoring system based on the combination of the three explainable methodologies is also described. Thus, the proposed method has the potential advantages to be applied in practical industry, and future research will explore handling unbalanced real-time datasets in various scenarios.  相似文献   

15.
行人检测系统涉及交通安全问题,需要很高的鲁棒性,基于单特征结合单核支持向量机的方法效果有限,为解决这一问题,提出采用多特征和多核学习的方法来提升系统的鲁棒性,通过将积分信道特征、多层次导向边缘能量特征和CENTRIST特征分别与直方图交叉核、高斯核和多项式核进行线性组合,采用简单多核学习(Simple MKL)来分别计算核函数的权重系数,将多核学习方法与经典的梯度直方图特征/支持向量机、多尺度梯度直方图特征/直方图交叉核支持向量机和特征融合/直方图交叉核支持向量机的行人检测方法进行比较,实验表明所提出的行人检测算法的鲁棒性有明显提升。  相似文献   

16.
The rapid growth in data generation and increased use of computer network devices has amplified the infrastructures of internet. The interconnectivity of networks has brought various complexities in maintaining network availability, consistency, and discretion. Machine learning based intrusion detection systems have become essential to monitor network traffic for malicious and illicit activities. An intrusion detection system controls the flow of network traffic with the help of computer systems. Various deep learning algorithms in intrusion detection systems have played a prominent role in identifying and analyzing intrusions in network traffic. For this purpose, when the network traffic encounters known or unknown intrusions in the network, a machine-learning framework is needed to identify and/or verify network intrusion. The Intrusion detection scheme empowered with a fused machine learning technique (IDS-FMLT) is proposed to detect intrusion in a heterogeneous network that consists of different source networks and to protect the network from malicious attacks. The proposed IDS-FMLT system model obtained 95.18% validation accuracy and a 4.82% miss rate in intrusion detection.  相似文献   

17.
文洁  肖宁 《包装工程》2019,40(5):258-265
目的针对当前较多图像复制-粘贴篡改检测算法主要依靠度量图像的结构特征来实现篡改检测,忽略了图像的强度特征,使其在各种几何变换下难以准确检测出伪造内容,导致检测结果中存在漏检和误检等问题,设计一种基于Harris算子耦合强度特征的图像复制-粘贴篡改检测算法。方法利用Harris算子对图像的特征点进行精确的提取。通过特征点构造圆形特征区域,求取该区域的Zernike矩,通过Zernike矩的大小实现对特征点的描述。随后,利用不同阶数的Zernike矩来描述图像的强度特征和纹理特征,从而构造匹配模型,对图像特征进行粗匹配,并引入RANSAC方法对粗匹配结果进行优化。最后,利用形态学腐蚀与膨胀操作将特征区域进行连通,以确定篡改区域。结果实验结果表明,与已有的图像伪造检测方案相比,所提算法具备更高的检测精度和鲁棒性,在噪声和旋转等变换下仍有更好的检测效果。结论所提技术拥有较高的伪造检测准确性,在图像水印、信息安全领域具有一定的参考价值。  相似文献   

18.
谭芳  穆平安  马忠雪 《计量学报》2021,42(2):157-162
针对传统多目标跟踪算法中行人检测速度慢、易受光照变化、行人快速移动及部分遮挡因素的影响造成行人目标跟踪性能差等问题,提出一种根据经典的Tracking-by-Detection模式,采用深度学习YOLOv3算法检测行人目标,然后利用FAST角点检测算法与BRISK特征点描述算法对相邻帧间的行人目标进行特征点匹配,实现多...  相似文献   

19.
Applications of internet-of-things (IoT) are increasingly being used in many facets of our daily life, which results in an enormous volume of data. Cloud computing and fog computing, two of the most common technologies used in IoT applications, have led to major security concerns. Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient. Several artificial intelligence (AI) based security solutions, such as intrusion detection systems (IDS), have been proposed in recent years. Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require the use of feature selection (FS) techniques to increase classification accuracy by minimizing the number of features selected. On the other hand, metaheuristic optimization algorithms have been widely used in feature selection in recent decades. In this paper, we proposed a hybrid optimization algorithm for feature selection in IDS. The proposed algorithm is based on grey wolf (GW), and dipper throated optimization (DTO) algorithms and is referred to as GWDTO. The proposed algorithm has a better balance between the exploration and exploitation steps of the optimization process and thus could achieve better performance. On the employed IoT-IDS dataset, the performance of the proposed GWDTO algorithm was assessed using a set of evaluation metrics and compared to other optimization approaches in the literature to validate its superiority. In addition, a statistical analysis is performed to assess the stability and effectiveness of the proposed approach. Experimental results confirmed the superiority of the proposed approach in boosting the classification accuracy of the intrusion in IoT-based networks.  相似文献   

20.
In recent years, cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things (IoT) and the widespread development of computer infrastructure and systems. It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security. Researchers have worked on developing intrusion detection models that depend on machine learning (ML) methods to address these security problems. An intelligent intrusion detection device powered by data can exploit artificial intelligence (AI), and especially ML, techniques. Accordingly, we propose in this article an intrusion detection model based on a Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System (RTS-DELM-CSIDS) security model. The proposed model initially determines the rating of security aspects contributing to their significance and then develops a comprehensive intrusion detection framework focused on the essential characteristics. Furthermore, we investigated the feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset evaluations and calculating accuracy parameters to validate. The experimental findings demonstrate that the RTS-DELM-CSIDS framework outperforms conventional algorithms. Furthermore, the proposed approach has not only research significance but also practical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号