首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization of the electrode microstructure in a solid oxide fuel cell (SOFC) is an important approach to performance enhancement. In this study, the relationship between the microstructure and electrochemical performance of an anode electrode fabricated by ultrasonic spray pyrolysis was investigated. Nickel-Ce0.9Gd0.1O1.95 (Ni-CGO) anodes were deposited on a dense yttria stabilized zirconia (YSZ) substrate by ultrasonic spray pyrolysis, and the resulting microstructure was analyzed. Scanning electron microscope (SEM) examinations revealed the impact of deposition temperature and precursor solution concentration on anode morphology, particle size and porosity. The electrochemical performance of the anode was measured by electrochemical impedance spectroscopy (EIS) using a Ni-CGO/YSZ/Ni-CGO symmetrical cell. The deposited anode had a particle size and porosity in ranging between 1.5-17 μm and 21%-52%, respectively. The estimated volume-specific triple phase boundary (TPB) length increased from 1.37 × 10−3 μm μm−3 to 1.77 × 10−1 μm μm−3as a result of decrease of the particle size and increase of the porosity. The corresponding area specific charge transfer resistance decreased from 5.45 ohm cm2 to 0.61 ohm cm2 and the activation energy decreased from 1.06 eV to 0.86 eV as the TPB length increased.  相似文献   

2.
Because the AC impedance technique, also known as electrochemical impedance spectroscopy (EIS), is being utilized by more and more researchers in proton exchange membrane (PEM) fuel cell studies, the technique has developed into a primary tool in such research. In this paper the recent work on PEM fuel cells using the AC impedance technique is reviewed. Both in situ and ex situ impedance measurements are discussed, with primary focus on the in situ measurements. Within the domain of in situ studies, various methods for measuring the impedance of a PEM fuel cell are examined, and typical impedance spectra in several common scenarios are presented. Representative applications of the AC impedance technique in PEM fuel cell research are also discussed. Finally, the necessity of a time domain rapid AC impedance technique is briefly discussed.  相似文献   

3.
交流阻抗法在质子交换膜燃料电池中的运用   总被引:1,自引:0,他引:1  
介绍了交流阻抗谱法在质子交换膜燃料电池中的运用,为质子交换膜燃料电池的优化设计提供参考。  相似文献   

4.
This paper mainly presents the AC impedance characteristics of a 2 kW PEMFC stack under different operating conditions and load changes. The AC impedances of the fuel cell stack are examined by a fuel cell impedance meter. Air stoichiometry, air humidity, and operation temperature are shown to have significant effects on the AC impedance of stack. When air stoichiometry decreases, the mass transfer resistance of stack increases obviously, but the influences on other resistances are very slight. The air humidity and operation temperature mainly influence the charge transfer resistance of stack. The influences of load changes on the AC impedance of stack are also investigated, and the results of which show that it is quite necessary to adjust the humidity of reactant gas according to the fuel cell load changes during fuel cell running. The AC impedance diagnosis of stack can provide some useful information for the running of fuel cell stack.  相似文献   

5.
An electrochemical analysis was conducted with respect to a hydrogen membrane fuel cell with SrZr0.8In0.2O3−δ electrolyte, which is a new type of fuel cell featuring an ultra-thin proton conductor supported on a dense metal anode. Most of the voltage loss derives from the cathode and the electrolyte, and a small amount of anode polarization was observed only in regions with high current density. The cathode polarization was approximately an order of magnitude lower than that of SOFCs. Furthermore, the conductivity of the film electrolyte was almost identical to that of the sinter at 600 °C; however, it was several times as large at 400 °C. A TEM micrograph revealed that the film electrolyte consists mainly of long columnar crystals, and this crystal structure can be related to the conductivity enhancement below 600 °C.  相似文献   

6.
In this study, the impact of ink rheology on the properties of screen-printed nickel/scandia-stabilized-zirconia anodes was investigated. From the rheological tests, terpineol and texanol inks with 1–3 wt% binder were suitable for screen-printing at the applied screen-printing condition, and hence these inks were used to study their rheological impact on the properties of resultant films. The mechanical hardness of anode films increased with binder content. Moreover, the electronic conductivity and electrode polarization resistance of the reduced films increased and decreased, respectively, with increasing binder content. The improved film properties can be related to the increased particle network strength within the inks, leading to improved film microstructures for application as SOFC anodes. The study also confirmed that the properties of films were more significantly affected by the binder content than solvent type, which had only a minor effect. Overall, from the perspective of ink rheology, screen-printability and performance, an ink with 3 wt% binder gave the best performance at the applied screen-printing condition.  相似文献   

7.
This paper presents a method for collecting ac impedance data from a commercial PEFC power system at operational loads. The PEM fuel cell stack in the power system, including 47 MEAs, was operated using room air and pure hydrogen (>99.99%). For a stack test in the power system, the power source for the embedded controller board was simultaneously switched from the fuel cell stack to a similar external power source after the system reached a steady temperature. The PEM fuel cells in the stack were tested by collecting the ac impedance data at different current levels. By using ac impedance, a single fuel cell, a group of fuel cells, and a complete stack were then tested without the embedded control devices for ohmic, activation, and mass transport losses. The ohmic resistance for each cell component in the stack was obtained as 117 mΩ cm2 at operational loads from 2.5 A to 35 A. The membrane thickness was further estimated as ca. 51–89 μm. Resistances from ohmic conduction, anode/cathode activation, and mass transport were measured and discussed using the Nyquist plots from the ac impedance spectra.  相似文献   

8.
The use of AC impedance spectroscopy for kinetic study of the ion intercalation into WO3 films is reviewed, and methods for extracting the diffusion coefficient of the ion diffusion process from AC impedance spectroscopy data are described. These are applied to several different electrochromic thin films, all based on tungsten oxide, and the electrochromic performance is correlated with the diffusion coefficient. The results are also compared with results of a previous paper which concentrated on modelling the voltage response of films coloured and bleached using constant current charge injection techniques. Several examples of non-ideal behaviour of the impedance spectra are observed, including depressed semicircles and evidence of two semicircles. A full discussion of these effects is given in a following paper.  相似文献   

9.
电池健康状态(state of health,SOH)是保证系统安全稳定运行的关键,健康状态估计不准将影响电池的使用性能,甚至引发电池滥用等问题。电池电化学阻抗谱通过宽频范围内电池的阻抗特征来反映其内部的电化学过程,蕴含了大量电池老化信息,已经逐渐成为分析锂离子电池性能的有力工具。然而,传统的电池阻抗谱测试方法耗时长、成本高昂。为此,以实现锂离子电池的精细化检测与健康状态快速评估为目标,围绕基于电化学阻抗谱重构技术的电池健康状态估计方法展开研究。通过逆重复最大长度序列设计多频电流激励信号,实现了电池阻抗谱的快速测试。采用连续小波变换开展阻抗谱重构,从而获取目标频率范围内的电池阻抗信息,整个过程耗时小于4.5 min。通过不同老化状态电池在特殊频率点下的重构阻抗幅值建立经验模型,实现了电池健康状态的快速准确评估。  相似文献   

10.
The supercapacitor multilayered electrode materials were prepared potentiodynamically based on polyaniline/activated carbon composite materials. The multilayers comprised of various combinations of activated carbon and doped polyaniline layers using three dopants such as sulphuric acid, camphor-10-sulphonic acid and p-toluene sulphonic acid. These composite materials were characterized using SEM, BET Surface area and FTIR. The supercapacitive properties of the fabricated symmetrical supercapacitors were analyzed by cyclic voltammetry, ac impedance and galvanostatic charge–discharge techniques. Based on the electrochemical results best one was chosen for fabricating the symmetrical supercapacitor and it showed the highest specific capacitance of 549.5 F/g. Further, it was found that these multilayered electrode materials gave higher capacitance than their single layered counter parts.  相似文献   

11.
In this study the fabrication and characterization of Ni/10ScSZ (Ni/10 mol% Sc2O3-90 mol% ZrO2) and Ni/10Sc1CeSZ (Ni/10 mol% Sc2O3-1 mol% CeO2-89 mol% ZrO2) cermet anode films was studied and compared. Both 10ScSZ and 10Sc1CeSZ electrolyte powders showed tetragonal and cubic phases at room temperature, respectively. The NiO/10ScSZ and NiO/10Sc1CeSZ composites with 10-60 vol% of Ni content were prepared by mixing as-received commercial powders of NiO, 10ScSZ and 10Sc1CeSZ followed by ink preparation. Samples were sintered for 1 h at temperatures of 1250-1350 °C. All the cermet films were then reduced under a mixture of hydrogen (10%) and nitrogen (90%) at 800 °C for 2 h. The effect of Ni content and sinter temperature on the DC electrical conductivity were investigated, and the results showed a sharp change in conductivity at around 30 vol% Ni, corresponding to continuity/discontinuity of the Ni-Ni contact network, and the conductivity increased as the sinter temperature increased from 1250 to 1350 °C. An acceptable electrical conductivity at 700 °C for these cermet films was obtained at >40 vol% Ni, consistent with behaviour reported for more conventional Ni/YSZ cermets. The effect of sinter temperature on the microstructure and porosity of Ni/10Sc1CeSZ and Ni/10ScSZ cermet films was also investigated. This revealed that the porosity of the cermet films with the same Ni content decreased as the sinter temperature increased and that, for a given sinter temperature, the porosity of the cermet films increased with Ni content. The porosities of 40Ni/60ScCeSZ (40 vol% Ni/60 vol% 10Sc1CeSZ) and 40Ni/60ScSZ (40 vol% Ni/60 vol% 10ScSZ) anodes sintered at 1250, 1300 and 1350 °C for 1 h were in the range of 30-45%. Electrochemical measurement of symmetrical cells using an 8YSZ electrolyte at 700 °C revealed that the lowest electrode polarization resistance of 40Ni/60ScCeSZ and 40Ni/60ScSZ anodes was obtained at sinter temperatures of 1350 °C and 1300 °C respectively. Carbon deposition over 40Ni/60ScCeSZ, 40Ni/60ScSZ and 40Ni/60YSZ catalysts was evaluated at 700 °C for 1 h at S/C = 0.8 and the results showed that the ratio of deposited carbon was lower in the case of Ni/10ScSZ and Ni/10Sc1CeSZ compared to Ni/YSZ (0.35). Overall, Ni/10Sc1CeSZ and Ni/10ScSZ cermets having 40 vol% Ni were found to be optimum, with the 40Ni/60ScCeSZ cermet proving to be better than 40Ni/60ScSZ cermet in terms of both electronic conductivity and electrode polarization resistance, with both materials exhibiting improved tolerance towards carbon deposition compared to Ni/YSZ.  相似文献   

12.
Single-step fabrication of a Poly(2,5-benzimidazole) (ABPBI)-based gas diffusion electrode (GDE) by directly adding a carbon-supported-catalyst to a homogeneous ABPBI solution prior to deposition and its membrane electrode assembly (MEA) were investigated for high-temperature proton exchange membrane (PEM) fuel cell applications. The ABPBI and LiCl dosages of the catalyst layer were varied. The characterizations of the resulting electrodes and/or MEA for the gas permeability, electrical resistance, specific electrochemical surface area, AC impedance, cyclic voltammetry and high-temperature PEM fuel cell performance were carried out. The high-temperature PEM fuel cell was successfully demonstrated at temperatures of up to 180 °C under ambient pressure operation. The fuel cell performance was evaluated by using dry hydrogen/oxygen gases, which added the advantage of eliminating the complicated humidification system of Nafion cells. The obtained results revealed that a catalyst layer with an ABPBI content of 15 wt.% and an ABPBI/LiCl ratio of 1:2 was sufficient to obtain the optimal cell performance with better electrochemical properties of low cell impedance, high electrochemical activity, low contact resistance and short activation time.  相似文献   

13.
BaZr0.1Ce0.7Y0.1Yb0.1O3−δ as a candidate electrolyte material is prepared by ethylene diamine tetraacetic acid assisted glycine-nitrate process. After calcining at 900 °C, the single-phase perovskite is obtained due to the better distribution of starting materials and the more feasible reaction kinetic conditions than solid state reaction method. The relative densities reach 96.8 and 98.4% respectively after sintering the pressed pellets at 1280 and 1400 °C for 10 h. In humidified oxygen the ionic conductivities are 0.015, 0.045, 0.101 and 0.207 S cm−1 at 500, 600, 700 and 800 °C, respectively. In air and humidified oxygen the activation energies for ionic conductivity are 66.1 and 68.9 kJ mol−1. In humidified hydrogen, however, different activation energies occur in low and high temperature ranges. The thermal expansion curve inflections at 500-800 °C with respect to possible phase changes are found. Zirconia aggregation possibly results in the higher activation energy and peculiar thermal expansion behavior. The results indicate the ethylene diamine tetraacetic acid assisted glycine-nitrate process is a very promising preparation method for solid oxide fuel cell practical application.  相似文献   

14.
    
In order to meet the required power and energy demand of battery-powered applications, battery packs are constructed from a multitude of battery cells. For safety and control purposes, an accurate estimate of the temperature of each battery cell is of vital importance. Using electrochemical impedance spectroscopy (EIS), the battery temperature can be inferred from the impedance. However, performing EIS measurements simultaneously at the same frequency on each cell in a battery pack introduces crosstalk interference in surrounding cells, which may cause EIS measurements in battery packs to be inaccurate. Also, currents flowing through the pack interfere with impedance measurements on the cell level. In this paper, we propose, analyse, and validate a method for estimating the battery temperature in a battery pack in the presence of these disturbances. First, we extend an existing and effective estimation framework for impedance-based temperature estimation towards estimating the temperature of each cell in a pack in the presence of crosstalk and (dis)charge currents. Second, the proposed method is analysed and validated on a two-cell battery pack, which is the first step towards development of this method for a full-size battery pack. Monte Carlo simulations are used to find suitable measurement settings that yield small estimation errors and it is demonstrated experimentally that, over a range of temperatures, the method yields an accuracy of ±1°C in terms of bias, in the presence of both disturbances.  相似文献   

15.
The changes in the properties of lithium-sulphur cell components (electrolyte, sulphur and lithium electrodes) during cycling are studied by AC impedance spectroscopy. It is shown that during the charge and discharge of lithium-sulphur cells the conductivity of the electrolyte is changed. We believe that the observed changes in the electrolyte conductivity can be explained by the formation of soluble lithium polysulphides by electrochemical reactions. The properties of the electrolyte significantly influence the rate of the electrochemical processes which occur both on the sulphur and lithium electrodes in lithium-sulphur cells.  相似文献   

16.
    
Small coin cell batteries are predominantly used for testing lithium-ion batteries (LIBs) in academia because they require small amounts of material and are easy to assemble. However, insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry. In this article, we compare coin cells and pouch cells of different size with exactly the same electrode materials, electrolyte, and electrochemical conditions. We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic Intermittent Titration Technique (GITT). Using full cell NCA-graphite LIBs, we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode. We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.  相似文献   

17.
    
The present study aims to examine the effect of nitrogen and carbon monoxide concentrations as well as the working temperature and the stoichiometry number on the performance of a self-made five-cell high-temperature Proton-exchange membrane fuel cell stack (PEMFC). The concentration of hydrogen in a reformed gas can be varied, and it may contain poisonous substances such as carbon monoxide. Hence, the composition of the fuel gas could affect the performance of the PEMFC. The polarization curve and the electrochemical impedance spectrogram are utilized to examine the behaviors of PEMFC. The cell temperature of 160 °C is found as an optimal working temperature in this study for high-temperature PEMFC. Measured results show that the stoichiometry of the anode gas has a minimal effect on the PEMFC performance. A high percentage of nitrogen makes hydrogen dilute and leads to poor cell performance. When carbon dioxide exceeds 3%, the pt-catalyst was covered with the CO and the cell performance significantly decreased. Finally, a raise of the PEMFC temperature boosted the catalyst energy and improved the detachment of the carbon monoxide and eventually enhanced carbon monoxide tolerance.  相似文献   

18.
We have investigated cell voltage characteristics and AC impedance characteristics of polymer electrolyte fuel cells (PEFCs) at various humidity temperatures for H2/O2 and H2/air test conditions (current density: 200, 400, and 600 mA cm−2, cell temperature: 80 °C, humidity temperature at respective electrodes: 40, 50, 60, and 70 °C). The diffusion overpotential increases with decreasing humidity in the low humidity temperature region such as 40 and 50 °C and the Nyquist plots obtained from AC impedance measurements show a small arc superposed on an elliptic arc in the low frequency region. The diameter of this small arc increases with decreasing humidity temperature from 50 to 40 °C or with increasing current density. These results suggest that oxygen transport across the ionomer film in the catalyst layer is significantly reduced in the low humidity condition, which causes a decrease in cell voltage, increase in diffusion overpotential, the appearance of overlapping arcs (two separate arcs) in the lower frequency region on the Nyquist plots, and the increase of mass transport resistance from Nyquist plots.  相似文献   

19.
The influence of the membrane thickness on the performance and durability of 25 cm2 membrane electrode assembly (MEA) toward dynamic aging test was investigated. The tested MEAs consist of chemically stabilized membranes (AQUIVION™) with thicknesses of 30 and 50 μm, electrocatalyst – 46 %Pt/C (Tanaka) with Pt loadings of 0.25 (anode), 0.45 mg cm−2 (cathode) and gas diffusion layers 25 BC (SGL Group). The applied dynamic aging procedure is repetitive current cycling between 0.12 A cm−2 for 40 s and 0.6 A cm−2 for 20 s. The testing conditions were 80 °C, fully saturated hydrogen and air, total pressure of 2.5 atm abs. The aging procedure was regularly interrupted for evaluating the MEAs' “health” via electrochemical methods and mass spectrometry. The carbon support degradation as a function of the electrode potential, current cycling and supplied gas was studied. The effects of the Pt particles agglomeration and Pt physical loss in the active layer of the cathode on the MEAs performance degradation were individually assessed. The effect of the membrane thicknesses on the performance and durability of the PEFC was established. The reasons and stages of MEAs performance degradation were analyzed.  相似文献   

20.
    
Effect of anode diffusion layer over the performance of the liquid feed direct methanol fuel cell has been studied by AC impedance spectroscopy. The anode employed comprises of the catalyst layer and diffusion layer. The latter comprises of backing layer and catalyst‐supporting layer. The supporting layer is present in between the backing layer and the catalyst layer. The composition of the supporting layer is optimized based on the information obtained from polarization and AC impedance measurements. Among the three types of carbons (Black pearl 2000, Vulcan XC‐72, Shawinigan acetylene black), Black pearls 2000 is found to be the ideal type of carbon used in the supporting layer. The optimized loading compositions of carbon, Nafion and PTFE in the supporting layer are reported to be 3 mg cm?2, 10 wt%, and 0 wt%, respectively. These values are rationalized on the basis of the transport of methanol and carbon dioxide and the crossover of methanol from the anode to the cathode. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号