首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着应用领域的不断拓宽,近年来锂离子电池行业呈现稳步快速增长态势,其正极材料迎来了前所未有的发展机遇。我国在锂离子电池正极材料的开发和产业化方面具有得天独厚的优势,拥有完善的产业链和可持续发展的良好势头,市场上出现了越来越多的正极种类和产品类型。本文介绍了国内锂离子电池正极材料标准的现状,对比分析了不同类别正极材料的关键技术指标要求,解读了指标出现差异的原因,并指出了个别标准的不足之处,对今后的标准化工作提出了建议。  相似文献   

2.
在现有商品化二次电池中,锂离子电池的比能量最高、循环性能最好,而且因其电极材料选择的多样性,作为储能电池具有广阔的应用前景。锂离子电池发展面临一些问题:比能量、比功率和循环寿命有待提升,安全性还没有可靠保证,制造成本过高,等等。针对这些问题,人们从电池材料选择、电池结构设计、电池制备装配与工艺、电池管理系统等方面探索解决方案。本文结合作者所在研究团队开展的工作,介绍锂离子电池关键材料(正极、负极和电解质)的研究进展。  相似文献   

3.
本文回顾了环三磷腈及其衍生物的合成,阐述了其在锂离子电池电解液,正负极材料等关键材料方面的应用研究进展,并进行了相应的展望.随着锂离子电池在高容量动力及储能领域中的广泛应用,电池的安全性问题日益凸显,材料安全性是电池安全性的基本保证.磷腈化合物由于其特殊的组成和结构,具有高效阻燃与电化学稳定性,在用于改善锂离子电池安全性方面受到越来越广泛的关注.在锂离子电池电解液添加剂和共溶剂的研究中发现,磷腈化合物不仅可以改善电解液的热稳定性和阻燃性能,还可以提高电池的充放电电压和循环稳定性;同时,也可以作为正负极材料的重要组分,改善电极材料的安全性.在锂离子电池安全性领域中具有较好的研究价值和实用意义.  相似文献   

4.
锂离子电池得到了快速发展,并改变了我们的生活。锂离子电池正极材料的研究是提高电池性能的关键;而理解正极材料的性能与结构之间的关系、阐释正极材料的电化学反应机理(尤其是性能衰减与失效机理)有助于提高材料的能量密度和功率密度。磁共振技术(含核磁共振和顺磁共振)在过去三十多年的研究中不断进步,逐渐成为研究正极材料构效关系的关键技术之一。本文总结了几个重要的已经商业化的正极材料(LiCoO2、NCA、NMC和LiFePO4)的磁共振研究进展,展示了核磁共振、顺磁共振在正极材料构效关系研究中的重要作用;尤其值得一提的是原位技术的发展在电化学反应机理中逐渐显示出其重要性。本文有助于了解磁共振技术在电池材料研究中的重要价值,并进一步推动磁共振技术的发展。  相似文献   

5.
全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本上解决电池安全性问题,是电动汽车和规模化储能理想的化学电源。为了实现大容量化和长寿命,从而推进全固态锂离子电池的实用化,电池关键材料的开发和性能的优化刻不容缓,主要包括制备高室温电导率和电化学稳定性的固态电解质以及适用于全固态锂离子电池的高能量电极材料、改善电极/固态电解质界面相容性。本文以全固态锂离子电池关键材料为出发点,综述了不同类型的固态电解质和正负极材料性能特征以及电极/电解质界面性能的调控和优化方法等,阐述了未来全固态锂离子电池关键材料的发展方向以及界面问题的解决思路,为探索全固态锂离子电池产业化前景奠定基础。  相似文献   

6.
锂离子电池由于具有高能量密度、高循环寿命、安全等诸多优点,是现代生活中最受欢迎的便携式电源,有着广阔的应用前景。为了充分发挥锂离子电池的潜力,推进其实用化进程,需要深入研究电极反应历程。作为锂离子电池研究的得力助手,原子力显微镜(AFM)能通过其针尖原子与电极表面原子之间的相互作用,实时检测电极表面的微观形貌,在纳米尺度上提供电极表面的物理化学信息,为电极材料和电解液的优化改性提供实验依据。本文综述了AFM在锂离子电池研究中的最新应用进展,包括电化学反应条件下电极材料的形貌变化、纳米力学性能和电学性能等,说明AFM将会进一步推动锂离子电池的研究进展。  相似文献   

7.
锂硫电池作为一种非常有前途的高能化学电源,随着电动汽车和便携式电子设备的发展,因其高理论比容量(1675 mA·h/g)和高理论能量密度(2600 W·h/kg)引起了人们的广泛关注。然而,锂硫电池发展过程中的一些挑战不可避免,包括硫较低的离子和电子导电性,较差的循环性以及生成的多硫化物易溶于有机溶剂等缺点,制约了锂硫电池的发展。本文结合近年来锂硫电池正极材料的研究进展,简要阐述了锂硫电池正极材料的研究现状、问题及面临的挑战。锂硫电池由于其发展中面临技术瓶颈难以突破,导致现在还无法大规模的应用,因而对其性能的改进也就成了当今的研究热点。硫电极材料电导率低、循环性能差,可以通过碳包覆或者掺杂改善材料性能。然而由于成本和技术问题,大部分锂硫电池正极材料目前还主要处于研究试验阶段。因此,在提高材料性能的前提下,通过碳包覆或者掺杂改善工艺,探索一条适合工业化生产的道路是下一阶段研究的重点。  相似文献   

8.
Recent developments in cathode materials for lithium ion batteries   总被引:9,自引:0,他引:9  
One of the challenges for improving the performance of lithium ion batteries to meet increasingly demanding requirements for energy storage is the development of suitable cathode materials. Cathode materials must be able to accept and release lithium ions repeatedly (for recharging) and quickly (for high current). Transition metal oxides based on the α-NaFeO2, spinel and olivine structures have shown promise, but improvements are needed to reduce cost and extend effective lifetime. In this paper, recent developments in cathode materials for lithium ion batteries are reviewed. This includes comparison of the performance characteristics of the promising cathode materials and approaches for improving their performances.  相似文献   

9.
2011年6月美国启动“材料基因组计划”(Materials Genome Initiative,MGI),变革了材料的研究与开发方式,大大加速新材料的发现,提高了材料从发现到应用的速度。我国于2016年启动首批 “材料基因工程关键技术与支撑平台重点专项”国家重点研发计划,其中,“基于材料基因组技术的全固态锂电池及关键材料研发”于2016年8月获得审批通过正式立项。北京大学深圳研究生院潘锋教授为负责人联合国内11家单位申请该项目并获得资助。该项目将开展材料基因组高通量计算、高通量制备和高通量检测等技术研究,并运用材料基因组技术指导和加速全固态锂离子电池及关键材料的研发,开发全固态电池样机,从根本上解决锂离子电池安全性问题。  相似文献   

10.
《Journal of power sources》2004,136(2):285-289
Developments in lithium rechargeable batteries since the last International Power Sources Symposium in Manchester in 2001 are described. The major developments are that, as expected, lithium cobalt oxide cathode material is being replaced by lithium cobalt/nickel oxide and polymer electrolyte batteries are now coming into production. Likely future developments are new cathode and electrolyte materials to reduce cost and to improve safety.Some research has been reported on sodium-ion batteries.  相似文献   

11.
锂硫电池的能量密度高,原料价格低廉,具有成本优势,是一种最具潜力的二次电池之一。然而受限于硫正极的低导电性以及多硫化物溶解导致的循环寿命衰减等因素,锂硫电池仍不能得到很好的商业化应用。作为硫的同主族元素,硒具有良好的电导率和可观的体积容量。结合了硫和硒的优点,硫硒固溶体(SexSy)引起了人们的极大关注。SexSy的导电性好、比容量高,但仍然存在穿梭效应、电解液匹配性和循环过程中体积变化大等问题。本文分析了近期锂电池SexSy基正极材料的研究现状,主要总结了碳材料、金属化合物、金属-有机框架和杂原子掺杂材料四个方面的相关研究进展,介绍了本课题组在SexSy基正极材料方面的部分研究成果,并对锂-硫/硒电池的未来发展前景进行了展望。  相似文献   

12.
便携式电子设备的微型化、轻量化与电动汽车、电网储能设备的飞速发展,对高能量密度的锂离子电池的研发和性能表现提出了越来越高的要求。锂离子电池正极材料是锂离子电池的核心,其提供锂离子并参与电化学反应,因此改善正极材料性能是提高锂离子电池能量密度的关键。人们需要进一步研究开发成本较低、安全性更好的高能量密度新型锂离子电池正极材料。本文主要从提升正极材料的比容量和工作电压两方面介绍三元、富锂锰基材料和高电位镍锰酸锂等高比能量正极材料的介尺度结构设计、制备与性能调控研发进展。  相似文献   

13.
商用锂离子电池由于采用含有易燃有机溶剂的液体电解质,存在着安全隐患。发展全固态锂离子电池是提升电池安全性的可行技术途径之一。目前全固态锂离子电池的应用还需要解决一些科学与技术问题,包括:开发能在宽温度范围使用,兼顾高电导率与电化学稳定性的固体电解质材料;减小电解质相与电极相界面间离子输运电阻的技术;适合全固态电池使用的正负极材料;相关材料与电池的设计与规模化制造技术。本文从固体电解质材料的研究开发进展,高通量计算用于固体电解质材料的筛选以及电极材料与固体电解质界面问题等方面进行了小结。  相似文献   

14.
A 100-mAh class of aluminum-laminated film packaged organic radical battery with a poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) composite cathode and a graphite anode has been fabricated. Its total weight was 22 g and the thickness was 4.3 mm. Because PTMA comprised only 6.2% of the total cell weight, the energy density was considerably less than that of a lithium ion battery. However, the power density per active material weight was found to be better than that of lithium ion battery. The applications which require high-power capability rather than high-energy density, such as the sub-battery in electronic devices and motor drive assistance in electric vehicles, would be appropriate for organic radical batteries in the future.  相似文献   

15.
《Journal of power sources》2004,133(2):229-242
Since the birth of the lithium ion battery in the early 1990s a lot of methods has been tried to prepare materials with better performance and/or lower cost. In comparison with other methods, mechanochemical methods are advantageous because they are based on simple processes, show high efficiency, low energy consumption and cost They are widely applied to prepare materials for lithium ion batteries such as cathode materials, anodic ones and solid electrolytes. The latest progress on these aspects is reviewed in this paper including the effects of mechanochemical methods and mechanisms in improving electrochemical performance. In addition, some problems concerning some materials and further directions are pointed out.  相似文献   

16.
固态聚合物锂电池具有高能量密度和高安全性的优点,有望解决新能源汽车的续航里程焦虑和安全问题。但是,现有的固态聚合物锂电池存在容量衰减快、过充、产气、内短路、日历失效等电池失效问题。而且,由于聚合物电解质不耐辐照,其较强的界面黏附性使得电极/电解质界面难以剥离,导致缺乏合适的表征技术深入研究固态聚合物锂电池的失效机制,这极大的限制了科学家对电池失效机制的深入理解,制约了电池失效解决方案的发展。因此,本文从锂枝晶生长、正极结构演变与机械失效、界面微结构演变和界面反应、聚合物电解质结构变化的角度出发,回顾了固态聚合物锂电池失效机制及其表征技术的研究进展,阐述了固态聚合物锂电池失效机制的研究思路。  相似文献   

17.
《Journal of power sources》2001,92(1-2):108-119
With the aim of developing 1 kW h class lithium ion batteries with long life and high efficiencies, we trial manufactured batteries that were fabricated using LiCoO2 and natural graphite as cathode and anode materials, respectively, with 1 M LiPF6 diluted by EC/DEC as an electrolyte. Fundamental studies necessary for the development of a large-scale battery consisting of laminated large electrodes were conducted, examining various factors. These factors were selected from the observations of batteries dismantled after the battery life reached an end point. The construction of the batteries was based on the results of fundamental research done to elucidate the problems encountered in the present study. We achieved 543 cycles with high efficiencies with the fourth battery. It is noteworthy that technical factors such as homogeneous impregnation of the electrolyte into the electrode laminates and maintenance of uniform conditions of laminates by the control of expansion and contraction accompanied with charge and discharge, respectively, were very important for the long life of large-scale lithium ion batteries.  相似文献   

18.
Metal–air batteries are being envisioned as a clean and high energy fuel for the modern automotive industry. The lithium–air battery has been found most promising among the various practically applicable metal–air systems, that is, Al–air, Li–air, Mg–air, Fe–air, and Zn–air. The theoretical specific energy of the Li–air battery is ~12 kWh/kg, excluding the oxygen mass. This is comparable with the energy density of gasoline, which is ~13 kWh/kg. It has been hypothesized that the Li–air battery could supply an energy ~1.7 kWh/kg after losses from over potentials to run a vehicle ~300 miles on a single charge. During the first decade of this century, a fair amount of research has been conducted on Li–air battery system. Yet, Li–air batteries could not make an industrial breakthrough, and are still in the laboratory phase since their birth. In this article, we technically evaluated the recent developments, and the inferences have been analyzed from the practical/commercial point of view. The study concludes that low discharge rate, lower number of cycles, oxidation of lithium anode, discharge products at the cathode, and side reactions inside the battery are the key limiting factors in the slow progress of Li–air batteries on an industrial scale. The ongoing researches to overcome these hurdles have also been discussed. This analysis will help the reader to understand the current standing of the lithium–air battery technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
锂硫电池具有能量密度高、原料低廉、绿色环保等优势,已成为下一代高性能二次电池的研究热点,但是活性材料利用率低、容量衰减较快、自放电严重等问题,极大地阻碍了该电池的实用化进程。正极是电池的核心部件,要实现锂硫电池的性能提升,必须对硫正极的组分结构进行合理的设计与构建。本文首先分析锂硫电池的工作原理、存在问题及解决途径,然后分别从硫正极的活性材料、集流体、表面涂层、黏结剂、添加剂等5个方面对当前的研究现状进行总结,最后对其未来的发展前景做出展望,文章指出,硫正极更应关注真实的能量密度水平,而锂硫电池的研究视野不应局限于正极材料。  相似文献   

20.
该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年4月1日至2013年5月31日上线的锂电池研究论文,共有855篇,选择其中100篇加以评论.层状氧化物正极材料的热稳定性,循环过程中的结构相变以及产气问题受到人们关注,高电压的尖晶石结构LiNi0.5M1.5O4在高压下与电解液的匹配以及添加剂的使用也受到人们较多的关注.高容量的Si基负极材料一直是研究的热点,本期碳材料负极也出现了几篇有深度的研究论文.固态聚合物电解质和无机电解质,液态电解质的成膜添加剂均有研究.具有高能量密度的新体系,锂硫电池的研究论文多于锂空气电池的.除了这些以材料为主的研究之外,针对电池安全和电池应用的研究论文也在逐渐增多,这对电池技术的创新将产生促进作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号