首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
锂离子电池在充放电过程中产生的热量主要为两部分,即因电化学反应而产生的可逆热和由极化产生的不可逆热。若电池内部温度达到82℃以上时,钴酸锂电池材料将发生热分解,引发一系列不可控化学反应,释放出大量的反应热。本论文在可逆热和不可逆热的基础上,耦合电池材料分解热,采用有限元技术,模拟锂离子电池在充放电过程中不同对流条件以及不同外界温度下电池内部温度的变化,为揭示锂离子电池热失控机制提供理论依据。  相似文献   

2.
针对软包锂离子电池放电过程中温度变化过程进行研究,依据电池产热基本理论,通过内阻实验及0.5 C放电倍率下的温升实验计算出瞬态生热率曲线,得出电池熵热系数,建立生热速率随放电深度不断变化的瞬态生热模型,基于该模型进行不同放电倍率的温度仿真模拟,并与实验进行对比。结果表明,温度变化模拟结果与实验相吻合,生热率变化模拟结果与实验计算值相符合,模型可以很好地模拟电池在不同放电倍率下的温度变化,对电池温升过程分析及电池热管理过程控制具有指导意义。  相似文献   

3.
电池包单体内阻的不一致会导致短板单体的过充过放,诱发渐变性故障,加剧电池组的失效,安全检测成为市场需求。本文对不同老化程度的磷酸铁锂充电曲线进行分析之后,提出一种基于容量增量的内阻一致性在线检测方法:对充电数据进行分析得到容量增量峰的特征,进而表征单体之间的内阻差异,最后使用箱型图进行异常检测。使用已设计的电池检测系统对电池包进行在线检测与HPPC检测,验证对比发现:两者归一化的单体内阻分布存在较高的一致性,且容量增量在线检测方法成本低、操作简便,适用于大规模的商业电池进行内阻一致性检测,不会对工程效率以及电池组寿命产生影响。在线检测方法为锂离子电池全生命周期预防性安全检测提供方法指导。  相似文献   

4.
本项目以纯电动汽车锂离子动力电池集总参数RC等效电路模型为研究对象,在传统模型基础上,考虑了电池的极化效应特性和迟滞电压特性,创建一种新的锂离子动力电池动态等效电路模型;基于实验测试,对该模型参数进行了辨识,并通过实验分析验证,该模型的估算误差为2%,比传统一阶及二阶模型准确,比三阶RC模型简单。  相似文献   

5.
The higher specific energy leads to more heat generation of a battery, which affects the performance and cycle life of a battery and even results in some security problems. In this paper, the capacity calibration, Hybrid Pulse Power Characteristic (HPPC), constant current (dis)charging, and entropy heat coefficient tests of chosen 11‐Ah lithium‐ion batteries are carried out. The entropy heat coefficient increases firstly and then decreases with the increase of the depth of discharge (DOD) and reaches the maximum value near 50% DOD. An electrochemical‐thermal coupled model of the chosen battery is established and then verified by the tests. The simulation voltage and temperature trends are in agreement with the test results. The maximum voltage and temperature error is within 2.06% and 0.4°C, respectively. Based on the established model, the effects of adjustable parameters on electrochemical characteristic are systematically studied. Results show that the average current density, the thickness of the positive electrode, the initial and maximum lithium concentration of the positive electrode, and the radius of the positive electrode particle have great influence on battery capacity and voltage. In addition, the influence degree of the internal resistance of the solid electrolyte interface (SEI) layer, the thickness of negative electrode, and the initial and maximum lithium concentration of the negative electrode on the capacity and voltage is associated with certain constraints. Meanwhile, the influences of adjustable parameters related to thermal characteristic are also systematically analyzed. Results show that the average current density, the convective heat transfer coefficient, the thickness, and the maximum lithium concentration of the positive electrode have great influence on the temperature rise. Besides, the uniformity of the temperature distribution deteriorates with the increase of the convective heat transfer coefficient.  相似文献   

6.
The performance and parameters of Li-ion battery are greatly affected by temperature. As a significant battery parameter, state of charge (SOC) is affected by temperature during the estimation process. In this paper, an improved equivalent circuit model (IECM) considering the influence of ambient temperatures and battery surface temperature (BST) on battery parameters based on second-order RC model have been proposed. The exponential function fitting (EFF) method was used to identify battery model parameters at 5 ambient temperatures including −10°C, 0°C, 10°C, 25°C and 40°C, fitting the relationship between internal resistance and BST. Then, the SOC of the IECM was estimated based on the extended Kalman filter (EKF) algorithm. Using the result calculated by the Ampere-hour integration method as the standard, the data of battery under open circuit voltage (OCV) test profile and dynamic stress test (DST) profile at different ambient temperatures has been compared with the ordinary second-order RC model, and the advantages of the SOC estimation accuracy with IECM was verified. The numerical results showed that the IECM can improve the estimation accuracy of battery SOC under different operating conditions.  相似文献   

7.
Investigation on the thermal behavior of the lithium-ion battery which includes the temperature response, heat contribution and generation, is of vital importance for their performance and safety. In this study, an electrochemical-thermal cycling model is presented for a 4 Ah 21700 type cylindrical single cell and 3× 3 battery pack and the model is validated by experiment on a single cell. Thermal behavior on a single cell is first analyzed, the results show that the heat generated in the charge is smaller than the discharge, and the polarization heat contributes the most to total heat, especially under higher rate. It can also be concluded from the battery pack that the temperature of the cell inside the battery pack is significantly greater than the external battery, while the temperature difference exists the opposite regular due to the worst heat dissipation of the central cell. Finally, after taking the enhanced liquid cooling strategy, the maximum temperature is 320.6 K that is reduced by 9.38%, and the maximum temperature difference is 4.9 K which is reduced by 69.6% at 2C, meeting the requirements of battery thermal management system.  相似文献   

8.
Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery   总被引:1,自引:0,他引:1  
A lumped-parameter thermal model of a cylindrical LiFePO4/graphite lithium-ion battery is developed. Heat transfer coefficients and heat capacity are determined from simultaneous measurements of the surface temperature and the internal temperature of the battery while applying 2 Hz current pulses of different magnitudes. For internal temperature measurements, a thermocouple is introduced into the battery under inert atmosphere. Heat transfer coefficients (thermal resistances in the model) inside and outside the battery are obtained from thermal steady state temperature measurements, whereas the heat capacity (thermal capacitance in the model) is determined from the transient part. The accuracy of the estimation of internal temperature from surface temperature measurements using the model is validated on current-pulse experiments and a complete charge/discharge of the battery and is within 1.5 °C. Furthermore, the model allows for simulating the internal temperature directly from the measured current and voltage of the battery. The model is simple enough to be implemented in battery management systems for electric vehicles.  相似文献   

9.
Power lithium‐ion batteries have been widely utilized in energy storage system and electric vehicles, because these batteries are characterized by high energy density and power density, long cycle life, and low self‐discharge rate. However, battery charging always takes a long time, and the high current rate inevitably causes great temperature rises, which is the bottleneck for practical applications. This paper presents a multiobjective charging optimization strategy for power lithium‐ion battery multistage charging. The Pareto front is obtained using multiobjective particle swarm optimization (MOPSO) method, and the optimal solution is selected using technique for order of preference by similarity to ideal solution (TOPSIS) method. This strategy aims to achieve fast charging with a relatively low temperature rise. The MOPSO algorithm searches the potential feasible solutions that satisfy two objectives, and the TOPSIS method determines the optimal solution. The one‐order resistor‐capacitor (RC) equivalent circuit model is utilized to describe the model parameter variation with different current rates and state of charges (SOCs) as well as temperature rises during charging. And battery temperature variations are estimated using thermal model. Then a PSO‐based multiobjective optimization method for power lithium‐ion battery multistage charging is proposed to balance charging speed and temperature rise, and the best charging stage currents are obtained using the TOPSIS method. Finally, the optimal results are experimentally verified with a power lithium‐ion battery, and fast charging is achieved within 1534 s with a 4.1°C temperature rise.  相似文献   

10.
采用实验测试与数值仿真的方法对NCR18650A三元锂电池组在1 ~ 3 C放电和1.6 C充电过程的温升特性进行测试,同时验证所建立电池产热模型的准确性。结果显示,实验测试结果与电池产热模型仿真结果之间的相对误差在合理范围内,满足工程应用需求。电池组在自然冷却的情况下,仅在1 C放电状态下符合其最佳工作区间42.5 ~ 45.0℃的要求,3 C放电倍率下最高温度为89.4℃。提出并建立基于热电致冷主动热管理模型,将热电致冷组件设置在电池组上方,致冷功率为50 W时可有效控制电池组3 C放电过程的温度,在最佳工作区间实现电池单体温差小于5℃,抑制电池组的热失效并实现良好的均温性。  相似文献   

11.
This paper deals with the thermal modeling of temperature rise in a pouch lithium-ion battery with LiFePO4 (also known as LFP) cathode material. The developed model represents the main thermal phenomena in the cell in terms of temperature change. The proposed model is validated with the collected experimental data from a module composed of 11 cells. In the conducted experiments, the different charge and discharge rates of 1/2C, 1C, 2C and 2.5C are applied. It is seen that, the increased discharge rates result in increased temperature on the surface of the battery. When the discharge rate is doubled, from 1C to 2C, cell temperatures have risen by 3.5 times. A simplified model for determining the heat generation is developed and validated with the test results.  相似文献   

12.
随着锂离子电池能量、寿命的提升,对安全性需求也越来越高,温度对电池的寿命和安全有着重要影响。以钴酸锂/中间相碳微球体系电池为研究对象,采用加速量热仪研究了不同工作电流、不同循环老化周期电池的产热特性和热失控行为,电池的发热量随着充放电倍率的增加而增大。通过比较不同循环老化周期电池的产热速率,发现容量衰减速度与直流内阻、产热量之间存在很强的关联性。从热失控行为研究发现,自放热起始温度为105.4℃,随后发生连续自放热,直到温度达到149.7℃热失控起始温度,发生内短路,最终导致电池热失控。循环后电池的热失控过程中自放热和热失控起始温度稍有变化,热失控时间大大缩短。  相似文献   

13.
The spatial resolving of temperature gradient is a key but challenging issue for the loading performance, aging evaluation, and safety guarantee of large format lithium battery, while the internal temperature cannot be measured directly in field. Notable temperature difference of large format battery emerges in heavy load applications. This paper tries to solve spatial-distributed temperature gradient by proposing a novel method. The multilayer thermal model and the real-time method based on this model are firstly proposed to noninvasively identify the spatial temperature gradient of the battery. And the thermal conduction resistance of the battery along aging are estimated by the extended lumped-parameter model and forgetting factor recursive least square algorithm, while the convection resistance and heat capacity can be estimated by the lumped parameter model and least square algorithm. The relation between the temperature sensor number and total thermal nodes is then derived by the experiment. Finally, the proposed method is systematically verified through the simulation and experiment. Both the spatial distribution and the highest node of the battery temperature are obtained with promising accuracy and robustness. And it can be implemented in battery management systems for various online applications such as electric vehicles and hybrid electric vehicles.  相似文献   

14.
Limited by the current power battery technology, electric vehicles show extremely poor duration performance and potential risk at low temperature, which is mainly caused by poor charging performance of lithium-ion batteries. To explore the impact of charging process on cycle degradation at low temperatures, a cycle aging experimental scheme with different charging C-rate (0.3C and 0.5C) under −10°C and −20°C was designed for the commercial LiFePO4 battery. The experimental batteries showed severe degradation after a few of cycles. The phenomenon of reduced internal resistance and up-shift of the charging curve was found during the early cycle stages (0th-20th cycle). The influence of low-temperature cycle on battery was analyzed by the increment capacity analysis (ICA); the fast decreasing intensity of ①*II showed sharp loss of lithium ions. Those lithium ions mainly transformed into lithium plating and built up dendrites instead of reintercalating into the anode crystal structure, causing the further degradation of capacity and ohmic resistance. Degradation law was obtained by curve regression analysis in the end.  相似文献   

15.
动力电池是新能源汽车关键部件,为进一步探究其热失控机理及影响因素,总结热失控发展过程,利用COMSOL软件构建锂离子电池单体模型,结合仿真实验结果详细分析其影响因素,并提出一款利用隔热罩、隔热盖板、隔热底座和可滑动扩容盒延缓热失控效果的可延缓热失控的汽车电池包。研究结果表明:热失控过程大致分为加热阶段、喷射和燃烧阶段、熄灭阶段,受4种副反应产热影响;在超过445.08 K的高温环境下,长时间工作的锂离子电池易发生热失控,失控热源关键在正极活性材料与电解液分解反应;当电池实际温度超过500 K时,温度若无法及时控制将导致火灾事故发生;同时,对流传热系数越高,电池温度变化越快;初始温度越高,热失控可能性越大。  相似文献   

16.
This paper develops an electro-thermal coupled model for a pouch battery which considers the influence of the electric potential distribution and thermal behaviours of tabs on the distributions of heat generation and temperature. This model reflects the connection between electric potential distribution and the heat generation distribution. Then, the proposed electro-thermal model is used to predict the thermal behaviour of a lithium-ion pouch battery under the conditions of various discharge currents and environmental temperatures. Tests are implemented to verify the prediction precision of the proposed thermal model. The results show that the electro-thermal coupled model can accurately predict both the temperature distribution and its rise. At 1 C discharge rate, the average mean static absolute errors (MSAEs) in the positive and negative tabs for all the ambient temperatures are 1.083 K and 0.377 K, respectively, and the average MSAE in the battery body is only 0.627 K; at the discharge rate of 3.5 C, the respective average MSAEs are 1.643 K for the positive tab, 0.581 K for the negative tab, and 0.889 K for the battery body. Last, the influence of the thermal contact resistance on the prediction of the tab temperature is studied. If it is considered in the thermal model of tabs, the predicted tab temperature is closer to the tested value and the MSAE can be limited within 2.65 K for the positive tab and 0.83 K for the negative tab in the cases researched.  相似文献   

17.
本文根据近年来锂离子电池产热特性方面的研究,详细阐述了锂离子电池产热的基本原理,并总结了国内外锂离子电池产热模型的研究现状。重点针对电化学-热耦合模型、电-热耦合模型以及热滥用模型进行了详细综述,并在此基础上对锂离子电池热效应的研究和产热模型的建立进行了展望。  相似文献   

18.
《Journal of power sources》2005,140(1):111-124
A detailed three-dimensional thermal model has been developed to examine the thermal behaviour of a lithium-ion battery. This model precisely considers the layered-structure of the cell stacks, the case of a battery pack, and the gap between both elements to achieve a comprehensive analysis. Both location-dependent convection and radiation are adopted at boundaries to reflect different heat dissipation performances on all surfaces. Furthermore, a simplified thermal model is proposed according to the examination of various simplification strategies and validation from the detailed thermal model. Based on the examination, the calculation speed of the simplified model is comparable with that of a one-dimensional model with a maximum error less than 0.54 K. These models successfully describe asymmetric temperature distribution inside a battery, and they predict an anomaly of temperature distribution on the surface if a metal case is used. Based on the simulation results from the detailed thermal model, radiation could contribute 43–63% at most to the overall heat dissipation under natural convection. Forced convection is effective in depressing the maximum temperature, and the temperature uniformity does not necessarily decrease infinitely when the extent of forced convection is enhanced. The metal battery case serves as a heat spreader, and the contact layer provides extra thermal resistance and heat capacity for the system. These factors are important and should be considered seriously in the design of battery systems.  相似文献   

19.
The reliable thermal conductivity of lithium-ion battery is significant for the accurate prediction of battery thermal characteristics during the charging/discharging process. Both isotropic and anisotropic thermal conductivities are commonly employed while exploring battery thermal characteristics. However, the study on the difference between the use of two thermal conductivities is relatively scarce. In this study, the isotropic and anisotropic thermal conductivities of the four commercially available lithium-ion batteries, ie, LiCoO2, LiMn2O4, LiFePO4, and Li (NiCoMn)O2, were reviewed and evaluated numerically through the heat conduction characteristics inside the battery. The results showed that there are significant differences in the temperature distribution in the battery caused by the isotropic and anisotropic thermal conductivities, which could affect the layout and cooling effectiveness of battery thermal management system. Furthermore, the effective thermal conductivities of porous electrodes and separator were determined to establish thermal conductivity bounds of lithium-ion batteries combined with the thicknesses of battery components. The thermal conductivity bounds could be applied to evaluate the rationality of the thermal conductivity data used in battery thermal models.  相似文献   

20.
基于在不同条件下对车用三元锂离子动力电池的充放电循环试验,分析电池寿命衰减程度及其影响因素。利用X-ray无损检测技术,测试以不同倍率大小电流进行充放电循环前后三元锂离子动力电池的内部结构变化,并评价了电池寿命衰减和安全失效程度,为研究电池寿命衰减及安全失效提供了新的方法。在充放电循环周期过程中,随着电池容量的不断衰减,基于无损检测技术可以获得电池内部结构出现越来越明显的缺陷,说明电池的寿命衰减速度越来越大,其安全性也越来越差。以不同倍率大小电流进行充放电循环后,将不同SOH状态下内部结构的断层扫描图像进行对比,发现车用三元锂离子动力电池的内部结构发生了不同程度的变化,说明与循环前相比电池的使用寿命有不同幅度的衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号