首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

2.
杜运  张海朗 《化工新型材料》2013,41(3):101-103,107
采用溶胶-凝胶法合成层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13-xAlx]O2(x=0,0.05,0.13)。用X射线衍射(XRD)、循环伏安(CV)和充放电测试等手段对产物的结构及电化学性能进行了表征。结果表明:采用溶胶-凝胶法在900℃空气氛围下煅烧12h制备的Li[Li0.2Mn0.54Ni0.13Co0.08Al0.05]O2晶型较好,具有α-NaFeO2型层状结构。室温,2.0~4.8V下,0.1C倍率下最高放电比容量达到268.3mAh/g,0.2C倍率下循环50次后比容量依然高达238.1mAh/g,具有良好的电化学性能。  相似文献   

3.
采用高温固相合成法制备富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zn_xO_2(x=0,0.03,0.06,0.10),Zn~(2+)掺杂对Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO_2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.48)Zn_(0.06)O_2的电化学性能较好。掺杂Zn~(2+)可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。  相似文献   

4.
富锂层状氧化物材料具有较高的比容量,被认为是下一代先进锂离子电池正极材料。采用丙烯酸热聚合法和柠檬酸溶胶-凝胶法分别合成了纳米富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2,并进行Mg2+掺杂改性。通过扫描电子显微镜、X射线粉末衍射仪对制备的正极材料进行形貌和结构表征,并组装成纽扣电池进行充放电性能测试和电化学阻抗谱分析。结果表明,丙烯酸热聚合法合成的正极材料粒径均匀,结晶度更高;与未掺杂样品相比,掺杂Mg2+的正极材料首次库伦效率从67.66%提高到73.34%,循环性能显著改善。  相似文献   

5.
采用碳酸盐共沉淀结合高温固相焙烧法制备了富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2, 并用不同量的FePO4对其进行表面包覆改性。SEM分析结果显示, FePO4可以均匀地包覆在富锂材料的颗粒表面, XRD显示包覆后的材料很好地保持了原有的层状结构, 且FePO4呈非晶态。电化学测试表明改变FePO4包覆量可以调节该材料特定的电性能指标: FePO4包覆量为2wt% 的材料具有最大的首次充放电容量, 在0.05C下分别为325.9和258.4 mAh/g; FePO4包覆量为4wt%的材料兼具较高的放电容量和循环稳定性; 材料的首次充放电效率随着FePO4含量的增加而逐渐升高, FePO4包覆量为20wt%时, 首次充放电效率达到97.4%。  相似文献   

6.
富锂层状氧化物是构筑高能量密度锂离子电池富有潜力的正极材料.然而,由于不可逆的结构变化和缓慢的界面动力学,传统的多晶富锂层状氧化物正极材料循环和倍率性能较差.本文提出了一种聚乙烯基吡咯烷酮(PVP-K30)辅助共沉淀制备单晶Li1.2Mn0.54Ni0.13Co0.13O2纳米片的方法.这种方法操作简单、成本低且便于放大生产.所制备的单晶纳米片内部晶格连续且无晶界,缩短了Li+的嵌入/脱嵌路径,加快了电极反应动力学过程.单晶结构还能抑制层状相向尖晶石相的不可逆相变和颗粒内部裂纹的形成,起到稳定层状结构的作用.电化学测试结果表明,所制备的Li1.2Mn0.54Ni0.13Co0.13O2单晶纳米片在0.1 C倍率下的可逆容量为254.5 mA h g-1,在5 C高倍率下循环1000次后容量保持率为71.9%.这种简单的制备纳米...  相似文献   

7.
采用鳞片石墨粉作为铝离子电池正极材料,其不同粒度大小对正极材料的表面特性和电化学性能都有影响。通过X射线衍射、X射线光电子能谱、充放电测试、倍率特性测试和循环性能测试分析该正极材料的晶体结构、化学价态和电化学性能。结果表明:铝离子电池正极材料鳞片石墨粉为良好的层状结构,P63/mc空间群,六方晶系。其中鳞片石墨粉325目(粒度45μm)在1C倍率下的充放电比容量分别为104.76和104.46mAh/g,其5C倍率较1C倍率的容量保持率为71.4%,循环100次后容量保持率为95.19%,因此其充放电比容量、倍率性能、循环性能等电化学性能较佳。  相似文献   

8.
用超声辅助溶液燃烧合成技术制备双层碳包覆的Na3V2(PO4)3 (NVP)钠离子电池正极材料,并对其电化学性能进行深入的研究。结果表明,双层碳包覆在NVP颗粒表面,由内自外分别为无定形硬碳和石墨烯。石墨烯添加量为5.0%(质量分数)的碳包覆NVP复合材料具有优异的电化学性能,在1 C倍率下充放电其初始比容量为117 mAh·g–1,循环300圈后容量的保持率为79%,在10 C倍率下其放电比容量高达100 mAh·g–1。这种正极材料电化学动力学性能的提高,源于均匀的双层碳包覆结构及其构建的三维电子传输通道。  相似文献   

9.
本文采用溶胶凝胶法合成了β-LiVOPO_4锂离子电池正极材料,研究了其结构和电化学性能。结果表明,在500℃较低温度下能够合成晶态纯相β-LiVOPO_4,其结构为正交晶系,属于Pnma空间群。这种材料具有非常稳定的电化学充放电长循环性能。在10 mA/g充放电电流密度下循环300次,其放电比容量没有衰减,维持在150 mAh/g以上。即使在100 mA/g的电流密度下循环1 000次,其比容量保持率仍旧高达100%。本文研究结果显示,LiVOPO_4适合用作高能量长循环寿命锂离子电池正极材料。  相似文献   

10.
用电弧蒸发法和固相硫化法制备核壳结构的碳约束NiS2纳米材料(NiS2@C)。用X射线衍射(XRD)、透射电镜(TEM)和Raman等手段对其表征的结果表明,外部碳层有较多的缺陷,厚度为4 nm,NiS2的粒径为28 nm。作为Na-S电池正极材料的电化学性能:在电流密度为100 mA·g-1条件下NiS2@C正极材料4次循环后库伦效率保持在90%以上,循环500次后仍有106.8 mAh·g-1的可逆比容量,具有较高的循环稳定性。电化学阻抗分析结果表明,NiS2@C外部碳层的良好电子导电性和优异的结构稳定性加快了电极反应并维持着界面离子迁移的动力学平衡。  相似文献   

11.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

12.
锂离子电池正极材料Li1+xV3O8的合成及性能研究   总被引:1,自引:0,他引:1  
研究了一种新型制备锂离子电池正极材料Li1+xV3O8的工艺方法.以NH4VO3为原料,通过淬火法制备出V2O5溶胶,加入LiOH溶液后,通过喷雾干燥法制备球形前驱体,再通过一定的热处理即制得锂离子电池正极材料Li1+xV3O8.试验中,进行了前驱体的DTA/TGA分析;对产物进行了XRD、SEM及电化学性能测试研究.结果表明,经过350℃热处理24h后得到的样品颗粒细小、呈球形、粒径分布均匀、结晶度好,并且还表现出很好的电化学性能,其首次放电比容量高达378mAh·g-1,经过10次充放电循环后,其放电比容量为312mAh·g-1.  相似文献   

13.
对LiFePO4/C复合前驱体,分别采用静态氮气气氛,动态氮气气氛及静态真空三种烧结方式进行碳热还原合成LiFePO4/C复合正极材料.采用XRD、SEM、CV和充放电循环测试等方法分析和表征材料的结构、形貌和电化学性能.结果表明,烧结方式对所得材料的结晶度、晶粒大小、碳含量、合成温度以及电化学性能均有显著影响.真空烧结所得材料结晶度高,而动态气氛烧结对材料颗粒细化及均匀化都有积极影响,同时也能有效促进锂离子扩散动力学.动态气氛烧结可将材料的烧结温度降低到500℃,且所得材料表现出优异的电化学性能.0.5C倍率下循环首次放电比容量达到163.4 mAh/g,50次循环后容量保持率为99.02%.  相似文献   

14.
通过机械球磨制备不同质量比的LCO/NCA混合正极材料,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征其相结构和微观形貌,研究了这种材料的电化学性能。结果表明,两种正极材料球磨混合后其晶体结构均未改变,但是初始的NCA球形二次颗粒被打散,形成的纳米粒子弥散填充在LCO微米颗粒的孔隙之间,提高了正极材料的涂膜密度和二者之间的接触紧密性。当LCO:NCA=6:4时混合正极材料具有最佳的颗粒级配效果,其首次充放电效率最高,为92.4%;在10 C (1 C=140 mA·g-1)倍率下的比容量(136 mA·h·g-1)是0.2 C时的78.0%,出现了明显的协同增强效果;在1 C倍率下循环100次其容量保持率为89.8%,表现出优异的电化学性能。  相似文献   

15.
采用球磨湿混和旋转合成相结合的新工艺来制备锂离子电池正极材料LiMn2O4,并对制备的材料进行了粒度、化学成分以及电化学性能测试.制备的LiMn2O4为正尖晶石结构,而且物质纯净.同一批次制备的材料化学成分均匀,粉末粒度分布范围窄,中粒径为10.67μm,首次充电容量为124mAh/g,放电容量为115mAh/g.循环次数达30次时,放电容量还大于100mAh/g,循环稳定性良好.球磨湿混工艺能将原料混合均匀,并能有效地使原料粒度细化而且粒度均匀.旋转合成工艺能使反应物和反应产物的温度均匀、粒度均匀、晶型结构与成分均匀.球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能性能良好的LiMn2O4  相似文献   

16.
采用间苯二酚–甲醛辅助溶胶–凝胶法制备了纳米Li2MnSiO4/C正极材料, 采用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试等方法对材料的结构、形貌以及电化学性能进行了分析和表征。结果表明, 所制备的样品属于正交晶系Pmn21空间群, 物相纯度很高, 颗粒尺寸细小(50 nm左右)且分布均匀, 并具有良好的电化学性能, 首次放电比容量为105.7 mAh/g, 50次循环后容量保持率高达90.7%。XRD图谱显示, 经过充放电循环后, Li2MnSiO4能始终保持稳定的晶体结构, 表明间苯二酚-甲醛在烧结过程中形成的网络包覆碳层不仅提高了材料的电子电导率, 还维持了材料结构的稳定。  相似文献   

17.
以酞酸丁酯和乙酸锂为前驱体,通过溶胶凝胶法成功制备了纳米钛酸锂Li_4Ti_5O12(LTO)负极材料。采用X射线衍射分析、扫描电镜(SEM)和透射电镜(TEM)分别对材料的物相与形貌进行了表征分析,并研究了煅烧条件和包覆改性对LTO输运特性的影响。研究表明,煅烧温度为800℃,时间为10 h条件下制备的样品的输运特性最佳,离子电导率为8.8×10-8 S/cm,电子电导率为8.53×10-10 S/cm。均匀的碳包覆层可以有效地改善样品的输运特性,LTO/C复合活性材料的离子与电子电导率分别达到4.35×10-7 S/cm和9.63×10-8 S/cm。电化学性能测试表明,碳包覆后的活性材料在0.1 C倍率下首次放电容量可达172.4 mAh/g;在5 C高倍率下循环充放电50次后,容量保持率可达94.4%,表现出较好的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号