首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
相对于传统型的锂离子电池,钛酸锂电池具有充放电响应速度快、倍率特性好、寿命长等优点,但钛酸锂电池单位容量的成本较高。本文从储能系统应用需求层面分析典型功率型储能系统对电池倍率和容量的要求,结合钛酸锂电池的特点,得出高倍率的钛酸锂电池应用于功率型储能系统相对于能量型锂电池,可以大幅度减少电池配置数量的结论,因此可发挥钛酸锂电池的竞争优势。  相似文献   

2.
In this study, a novel mesoporous carbon-encapsulated NiO nanocomposite is proposed and demonstrated for Li-ion battery negative electrode. The nanostructure of the electrode composes of an ordered mesoporous CMK-3 as a 3D nanostructured current collector with micorporous channels for Li+ transportation. In addition, exclusive formation of NiO nanoparticles in the confined space of the ordered mesoporous carbon is achieved using the hydrophobic encapsulation route. The half-cell assembled with the synthesized NiO/CMK-3 nanocomposite is able to deliver a high charge capacity of 812 mAh g−1 at the first cycle at a C-rate of 1000 mA g−1 and retained throughout the test with only 0.236% decay per cycle. Even the C-rate as high as 3200 mA g−1, a charge capacity of 808 mAh g−1 contributed by the NiO nanoparticles in CMK-Ni is obtained, which shows excellent rate capability for NiO with utilization close to 100%. The result suggests fast kinetics of conversion reaction for NiO with Li+. It also indicates the blockage of the pore channels by NiO nanoparticles does not take place in the synthesized NiO/CMK-3.  相似文献   

3.
The charge, discharge, and total energy efficiencies of lithium‐ion batteries (LIBs) are formulated based on the irreversible heat generated in LIBs, and the basics of the energy efficiency map of these batteries are established. This map consists of several constant energy efficiency curves in a graph, where the x‐axis is the battery capacity and the y‐axis is the battery charge/discharge rate (C‐rate). In order to introduce the energy efficiency map, the efficiency maps of typical LIB families with graphite/LiCoO2, graphite/LiFePO4, and graphite/LiMn2O4 anode/cathode are generated and illustrated in this paper. The methods of usage and applications of the developed efficiency map are also described. To show the application of the efficiency map, the effects of fast charging, nominal capacity, and chemistry of typical LIB families on their energy efficiency are studied using the generated maps. It is shown how energy saving can be achieved via energy efficiency maps. Overall, the energy efficiency map is introduced as a useful tool for engineers and researchers to choose LIBs with higher energy efficiency for any targeted applications. The developed map can be also used by energy systems designers to obtain accurate efficiency of LIBs when they incorporate these batteries into their energy systems.  相似文献   

4.
Cycle-life model for graphite-LiFePO4 cells   总被引:1,自引:0,他引:1  
In this report, cycling induced capacity fade of a LiFePO4 battery was studied and cycle-life models were established. Cell life data for establishing the model were collected using a large cycle-test matrix. The test matrix included three parameters, temperature (−30 to 60 °C), depth of discharge (DOD) (90-10%), and discharge rate (C-rate, ranging from C/2 to 10C, with the 1C rate corresponding to 2A). At the low C-rates, experimental results indicated that the capacity loss was strongly affected by time and temperature, while the DOD effect was less important. At the high C-rates, the charge/discharge rate effects became significant. To establish a life model, we adopt a power law equation in which the capacity loss followed a power law relation with time or charge throughput while an Arrhenius correlation accounted for the temperature effect. This model, when parameters were allowed to change with C-rates, was found to represent a large array of life cycle data. Finally, we discuss our attempts in establishing a generalized battery life model that accounts for Ah throughput (time), C-rate, and temperature.  相似文献   

5.
《Journal of power sources》2006,161(2):1385-1391
The effect of the charging protocol on the cycle life of a commercial 18650 Li-ion cell was studied using three methods: (1) constant current (CC) charging, (2) constant power (CP) charging, and (3) multistage constant current (MCC) charging. The MCC-charging consists of two CC steps, which starts with a low current to charge the initial 10% capacity followed by a high current charging until the cell voltage reaches 4.2 V. Using these methods, respectively, the cell was charged to 4.2 V followed by a constant voltage (CV) charging until the current declined to 0.05 C. Results showed that the cycle life of the cell strongly depended on the charging protocol even if the same charging rate was used. Among these three methods, the CC-method was found to be more suitable for slow charging (0.5 C) while the CP-method was better for fast charging (1 C). Impedance analyses indicated that the capacity loss during cycling was mainly attributed to the increase of charge-transfer resistance as a result of the progressive growth of surface layers on the surface of two electrodes. Fast charging resulted in an accelerated capacity fading due to the loss of Li+ ions and the related growth of a surface layer, which was associated with metallic lithium plating onto the anode and a high polarization at the electrolyte–electrode interface. Analyses of the cell electrochemistry showed that use of a reduced current to charge the initial 10% capacity and near the end of charge, respectively, was favorable for long cycle life.  相似文献   

6.
电池产业发展的重要方向之一是提高锂离子电池快速充电能力。然而,快速充电电池经常遭受容量和功率性能衰减。快充电池开发涉及多尺度问题,因此要从原子层面到电池水平进行充分考虑。从现有的文献资料出发,概括总结了开发具有快充性能电池的一些关键要素。这些要素包括提高正极材料锂离子迁移速度、加快锂离子嵌入负极材料的速度、提高电解液离子导电性、选择快充型隔膜、提高电极离子和电子导电性以及充电策略的选择。  相似文献   

7.
The effects of multiwalled carbon nanotubes (MWNTs) and carbon black (CB) as conducting additives on the rate capability of natural graphite negative electrodes in lithium-ion (Li-ion) batteries is investigated within concentration ranges where no degradation of anode capacity is observed. MWNT or CB solutions prepared with Nafion in an 80:20 volume mixture of water:1-propanol are incorporated into graphite precursor suspensions consisting of graphite particulates, carboxymethyl cellulose, and styrene butadiene rubber prepared in an aqueous medium. While negative electrodes with MWNTs demonstrate much better rate behaviour than those without MWNTs at a high C-rate, the rate capability of negative electrodes with MWNTs is not much different from that with CB. The reason for this similar behaviour is investigated with respect to the structural changes and aspect ratio of MWNTs, as well as the density difference between MWNTs and carbon black. Scanning electron microscopy images and Raman spectra for the dispersed MWNTs indicate that MWNTs are significantly damaged and shortened during dispersion, which reduces their electrical conductivity and increases their percolation threshold. This damage negatively affects the rate capability of graphite-nanotube composite electrodes.  相似文献   

8.
In this paper, the overcharge tests of 25 Ah LiFePO4/graphite batteries are conducted in an open environment and the overcharge-to-thermal-runaway characteristics are studied. The effects of current rates (C-rates: 2C, 1C, 0.5C, and 0.3C) and states of health (SOHs: 100%, 80%, 70%, and 60%) on thermal runaway features are discussed in detail. The overcharge process can be summarized into five stages based on the experimental phenomena (C-rate ≥ 1 and SOH ≥ 80%): expansion, fast venting after safety valve rupture, slow venting, intense jet smoke, and explosion, while the battery cannot explode at lower C-rates and SOHs. The maximum pressure increases with the increase in C-rate or SOH. There are five obvious inflection points in the voltage curve during overcharge process. The V1 (point B) of aged battery, corresponding to lithium plating on the anode, changes little with C-rates. It is slightly lower than that of the new battery. A sharp drop in voltage (point E) is probably due to the internal short circuit (ISC), caused by the local melting and rupture of the separator. It takes more than 2 minutes from the moment of ISC to thermal runaway regardless of the SOH, indicating that there are a few minutes to take safety measures if the voltage is an indication parameter. The onset temperature of thermal runaway decreases first and then increases as the SOH decreases from 100% to 60% during 1C constant overcharge tests. These results can provide guidance for the thermal management of the whole battery life cycle and the reuse of retired batteries.  相似文献   

9.
Limited by the current power battery technology, electric vehicles show extremely poor duration performance and potential risk at low temperature, which is mainly caused by poor charging performance of lithium-ion batteries. To explore the impact of charging process on cycle degradation at low temperatures, a cycle aging experimental scheme with different charging C-rate (0.3C and 0.5C) under −10°C and −20°C was designed for the commercial LiFePO4 battery. The experimental batteries showed severe degradation after a few of cycles. The phenomenon of reduced internal resistance and up-shift of the charging curve was found during the early cycle stages (0th-20th cycle). The influence of low-temperature cycle on battery was analyzed by the increment capacity analysis (ICA); the fast decreasing intensity of ①*II showed sharp loss of lithium ions. Those lithium ions mainly transformed into lithium plating and built up dendrites instead of reintercalating into the anode crystal structure, causing the further degradation of capacity and ohmic resistance. Degradation law was obtained by curve regression analysis in the end.  相似文献   

10.
The effect of negative to positive electrode materials’ weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite.  相似文献   

11.
We report on a new composite material in view of its application as a negative electrode in lithium-ion batteries. A commercial preceramic polysilazane mixed with graphite in 1:1 weight ratio was transformed into a SiCN/graphite composite material through a pyrolytic polymer-to-ceramic conversion at three different temperatures, namely 950 °C, 1100 °C and 1300 °C. By means of Raman spectroscopy we found successive ordering of carbon clusters into nano-crystalline graphitic regions with increasing pyrolysis temperature. The reversible capacity of about 350 mAh g−1 was measured with constant current charging/discharging for the composite prepared at 1300 °C. For comparison pure graphite and pure polysilazane-derived SiCN ceramic were examined as reference materials. During fast charging and discharging the composite material demonstrates enhanced capacity and stability. Charging and discharging in half an hour lead to about 200 and 10 mAh g−1, for the composite annealed at 1300 °C and pure graphite, respectively. A clear dependence between the final material capacity and pyrolysis temperature is found and discussed with respect to possible application in batteries, i.e. practical discharging potential limit. The best results in terms of capacity recovered under 1 V and high rate capability were also obtained for samples synthesized at 1300 °C.  相似文献   

12.
This paper studies the electrochemical behaviour of the pressure inside a sealed Ni-MH cell due to gases evolved under different charge/discharge currents and states of charge (SOC). The work is focused to determine the best procedure to get fast charge and long cycle life without detrimental effects on the battery and possible hazards affecting the safety of the user. The device was studied under a wide range of charge current (0.1-5 C), establishing that optimum conditions to minimize the inner pressure during uninterrupted use are obtained if either charge rates up to 0.5 C or higher rates not surpassing 90% of the nominal capacity are employed. Charge times corresponding to the range between 80% and 130% of the nominal capacity were also tested, analyzing the effect of overcharges on inner pressure, discharge capacity, efficiency and integrity of the cell. It was verified that charging the cell up to 130% at 2 C rate reaches an inner pressure 5 times higher than that obtained at 0.5 C. High rate discharge was also characterized at uninterrupted use of the cell, demonstrating the importance of the cut-off discharge criterion at high rates, to avoid the inner gases accumulation due to incomplete discharge of electrodes and overcharge in a following electrochemical cycle.  相似文献   

13.
A three-electrode Li-ion cell with metallic lithium as the reference electrode was designed to study the charging process of Li-ion cells. The cell was connected to three independent testing channels, of which two channels shared the same lithium reference to measure the potentials of anode and cathode, respectively. A graphite/LiCoO2 cell with a C/A ratio, i.e., the reversible capacity ratio of the cathode to anode, of 0.985 was assembled and cycled using a normal constant-current/constant-voltage (CC/CV) charging procedure, during which the potentials of the anode and cathode were recorded. The results showed that lithium plating occurred under most of the charging conditions, especially at high currents and at low temperatures. Even in the region of CC charging, the potential of the graphite might drop below 0 V versus Li+/Li. As a result, lithium plating and re-intercalating of the plated lithium into the graphite coexist, which resulted in a low charging capacity. When the current exceeded a certain level (0.4C in the present case), increasing the current could not shorten the charging time significantly, instead it aggravated lithium plating and prolonged the CV charging time. In addition, we found that lowering the battery temperature significantly aggravated lithium plating. At −20 °C, for example, the CC charging became impossible and lithium plating accompanied the entire charging process. For an improved charging performance, an optimized C/A ratio of 0.85–0.90 is proposed for the graphite/LiCoO2 Li-ion cell. A high C/A ratio results in lithium plating onto the anode, while a low ratio results in overcharge of the cathode.  相似文献   

14.
Novel lithium titanate hydrate nanotubes for lithium ion batteries have been easily prepared via a hydrothermal method. This material demonstrates high energy density, outstanding rate capabilities and a very long cycle life comparable to those of supercapacitors. At a rate equivalent to a 10-min total charge/discharge, the as-prepared lithium titanate hydrate nanotubes exhibit a life of over 5000 charge/discharge cycles while still retaining up to 86.3% of its original capacity. The abilities of lithium titanate hydrate nanotubes to fully charge within minutes for thousands of times and still retain a large capacity may find promising applications in hybrid and plug-in hybrid electric vehicles.  相似文献   

15.
The zinc morphology on repeated charging and discharging in flow-assisted zinc-nickel oxide cells was studied. The results show that higher charge rates cause more dendritic growth of zinc deposition on charging and tend to cause deterioration of battery cells. However, when the electrolyte velocity is higher than 15 cm s−1, the direction of dendrites was distorted toward the flow direction and the internal short circuit was suppressed. Good cycle life was obtained - 1500 cycles at 100% depth of discharge and C/2 charge and discharge rate. Also, the battery was scaled up to a 100 Wh prismatic cell, and more than 200 cycles were obtained.  相似文献   

16.
Solid electrolyte interface (SEI) formation is a key that utilizes to protect the structure of graphite anode and enhances the redox stability of lithium-ion batteries before entering the market. The effect of SEI formation applies a differential pulse (DP) and constant current (CC) charging on charge-discharge performance and cycling behavior into brand new commercial lithium ion batteries is investigated. The morphologies and electrochemical properties on the anode surface are also inspected by employing SEM and EDS. The electrochemical impedance spectra of the anode electrode in both charging protocols shows that the interfacial resistance on graphite anodes whose SEI layer formed by DP charging is smaller than that of CC charging. Moreover, the cycle life result shows that the DP charging SEI formation is more helpful in increasing the long-term stability and maintaining the capacity of batteries even under high power rate charge-discharge cycling. The DP charging method can provide a SEI layer with ameliorated properties to improve the performance of lithium ion batteries.  相似文献   

17.
《Journal of power sources》1996,63(1):127-130
The electrochemical properties of coke and natural graphite in some electrolyte solutions containing diethylcarbonate (DEC) are studied. It is found that natural graphite exhibits am excellent performance, such as high discharge capacity (370 mAh−1 g), when a mixed solvent composed of ethylene carbonate (EC) and DEC is used. The charge/discharge characteristics of the coke electrode are mot influenced by the species of the electrolyte solution, but those of the natural graphite electrode are very much influenced by the species of the electrolyte solution. It is confirmed that there are three patterns in the behaviour of the graphite electrode in the electrolyte solutions tested in this investigation. In the first pattern, natural graphite can be charged to C6Li and them discharged. In the second pattern, the charging and discharging of the natural graphite electrode is impossible and destruction of the natural graphite crystal structure is observed. In the third pattern, lithium is intercalated into the graphite layer but the de-intercalation of lithium does not take place.  相似文献   

18.
Carbonaceous material, if it is to compete with metallic hydride alloys as a hydrogen storage electrode in a reversible chemical power source, should demonstrate 2 key qualities. Firstly, it should exhibit a high hydrogen elecrosorption. Secondly, it should co-operate efficiently with the cathode under particular charging and discharge conditions. Based on this assumption, an investigation into the influence of charging conditions on storage efficiency of a lignin based active carbon electrode with high hydrogen storage capacity was undertaken. Current densities of up to 32 A/g and charging times ranging from 196 seconds to 48 h were used. The results show that it is possible to charge the electrode rapidly even for tens of seconds using adequately high current density. However, full exploitation of charge storage capability of the carbon material (585 mA h/g in the tested material [the equivalent of storing 2.17 wt% in gas hydrogen]), required significant overcharge and, therefore, was only possible at a very low coulombic efficiency – below 2%. The acceptable coulombic efficiency of the charge/discharging process – 60%, could only be reached provided that less than 50% of the maximum material sorption capacity was utilized.  相似文献   

19.
10 wt.% carbon-coated natural graphite (NC-10) is prepared by thermal vapor deposition. The carbon coating is electrochemically investigated at −5 °C; it improves lithium intercalation in the graphite's interlayer spacing. NC-10 graphite clearly shows 3 voltage plateaus and a higher capacity during the first charge/discharge cycle at −5 °C than uncoated natural graphite. XRD study of the electrode after the first charging shows increased lithium intercalation into the graphite layers and also suppression of lithium deposition on the graphite's surface. Due to the homogeneous potential profile on the graphite surface, carbon coating enhance lithium intercalation at −5 °C. In addition, NC-10 shows less lithium deposition on the surface than bare natural graphite.  相似文献   

20.
Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号