首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a large-scale wireless sensor network (WSN), densely distributed sensor nodes process a large amount of data. The aggregation of data in a network can consume a great amount of energy. To balance and reduce the energy consumption of nodes in a WSN and extend the network life, this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm. The algorithm uses a clustering method to form and optimize clusters, and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN. To ensure that the cluster head (CH) selection in the network is fair and that the location of the selected CH is not concentrated within a certain range, we chose the appropriate CH competition radius. Simulation results show that, compared with LEACH, LEACH-C, and the DEEC clustering algorithm, this algorithm can effectively balance the energy consumption of the CH and extend the network life.  相似文献   

2.
Energy conservation is a significant task in the Internet of Things (IoT) because IoT involves highly resource-constrained devices. Clustering is an effective technique for saving energy by reducing duplicate data. In a clustering protocol, the selection of a cluster head (CH) plays a key role in prolonging the lifetime of a network. However, most cluster-based protocols, including routing protocols for low-power and lossy networks (RPLs), have used fuzzy logic and probabilistic approaches to select the CH node. Consequently, early battery depletion is produced near the sink. To overcome this issue, a lion optimization algorithm (LOA) for selecting CH in RPL is proposed in this study. LOA-RPL comprises three processes: cluster formation, CH selection, and route establishment. A cluster is formed using the Euclidean distance. CH selection is performed using LOA. Route establishment is implemented using residual energy information. An extensive simulation is conducted in the network simulator ns-3 on various parameters, such as network lifetime, power consumption, packet delivery ratio (PDR), and throughput. The performance of LOA-RPL is also compared with those of RPL, fuzzy rule-based energy-efficient clustering and immune-inspired routing (FEEC-IIR), and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm (RISA-RPL). The performance evaluation metrics used in this study are network lifetime, power consumption, PDR, and throughput. The proposed LOA-RPL increases network lifetime by 20% and PDR by 5%–10% compared with RPL, FEEC-IIR, and RISA-RPL. LOA-RPL is also highly energy-efficient compared with other similar routing protocols.  相似文献   

3.
In the past few decades, Energy Efficiency (EE) has been a significant challenge in Wireless Sensor Networks (WSNs). WSN requires reduced transmission delay and higher throughput with high quality services, it further pays much attention in increased energy consumption to improve the network lifetime. To collect and transmit data Clustering based routing algorithm is considered as an effective way. Cluster Head (CH) acts as an essential role in network connectivity and perform data transmission and data aggregation, where the energy consumption is superior to non-CH nodes. Conventional clustering approaches attempts to cluster nodes of same size. Moreover, owing to randomly distributed node distribution, a cluster with equal nodes is not an obvious possibility to reduce the energy consumption. To resolve this issue, this paper provides a novel, Balanced-Imbalanced Cluster Algorithm (B-IBCA) with a Stabilized Boltzmann Approach (SBA) that attempts to balance the energy dissipation across uneven clusters in WSNs. BIBCA utilizes stabilizing logic to maintain the consistency of energy consumption among sensor nodes’. So as to handle the changing topological characteristics of sensor nodes, this stability based Boltzmann estimation algorithm allocates proper radius amongst the sensor nodes. The simulation shows that the proposed B-IBCA outperforms effectually over other approaches in terms of energy efficiency, lifetime, network stability, average residual energy and so on.  相似文献   

4.
考虑到无线传感器分簇网络中簇的规模、簇头数量和节点剩余能量是能量有效型分簇路由算法关注的重要指标,提出了一种基于能量优化模型(EOM)的分布式分簇算法——EOMC,该算法通过建立网络能耗优化模型,以最优簇头数构建分簇通信规模,并结合功率控制将候选簇头限制在一定宽度的选举环带,使得簇头分布均衡,同时兼顾到节点剩余能量进行分簇,以达到均衡节点能耗,延长网络生存期的目的。与低能耗自适应分簇分层(LEACH)协议的对比仿真的结果表明,该算法能够达到预期指标,算法的开销相对较小。  相似文献   

5.
一种低计算复杂度的无线传感器网络分簇定位算法   总被引:1,自引:0,他引:1  
针对已有的集中式定位算法定位精度低,而分布式定位算法计算复杂度高、通信量大的问题,提出了一种适用于无线传感器网络的计算复杂度低的节点分簇定位算法.首先,提出满足最大连通度的多边界节点分簇算法,采用此算法把网络划分为若干个簇,各簇分别进行簇内节点定位;其次,各簇进行融合,最终实现全网节点的定位.仿真结果表明,这种分簇定位算法比分布式定位算法计算复杂度低、通信量小、定位精度相当或略差,比集中式定位算法计算复杂度低、通信量小、定位精度高.采用该算法可以降低传感器网络节点定位过程中的能耗,提高计算效率,延长网络寿命.  相似文献   

6.
In this paper, the energy conservation in the ununiform clustered network field is proposed. The fundamental reason behind the methodology is that in the process of CH election, nodes Competition Radius (CR) task is based on not just the space between nodes and their Residual Energy (RE), which is utilized in Energy-Aware Distributed Unequal Clustering (EADUC) protocol but also a third-degree factor, i.e., the nearby multi-hop node count. In contrast, a third-factor nearby nodes count is also used. This surrounding data is taken into account in the clustering feature to increase the network’s life span. The proposed method, known as Energy Conscious Scattered Asymmetric Clustering (ECSAC), self-controls the nodes’ energy utilization for equal allotment and un-equal delivery. Besides, extra attention is agreed to energy consumption in the communication process by applying a timeslot-based backtracking algorithm for increasing the network’s lifetime. The proposed methodology reduces the clustering overhead and node communication energy consumption to extend the network’s lifetime. Our suggested method’s results are investigated against the classical techniques using the lifetime of the network, RE, alive hop count and energy consumption during transmission as the performance metric.  相似文献   

7.
In this article, a novel feature selection method based on the Fisher ratio (F-ratio) and k-means clustering algorithm is presented and evaluated for nondestructive monitoring of acoustic mission (AE) sources in ship-hull structures. Avoiding complex and time-consuming implementations, the proposed approach use the advantages of the discrimination measure of the F-ratio and the fast convergence rate of a k-means algorithm in the feature selection problem. An extremely efficient set of only four features per sensor is selected for AE sources localization using a radial basis function (RBF) neural network (NN) giving error-free localization accuracy.

In the presence of additive white Gaussian noise, different type of information has been selected from the original set of 90 features. Extensive experiments show that even in the very noisy environment of 0 dB SNR, a small set of four features can be used for robust neural localization of AE sources giving localization rates better than 94%.  相似文献   

8.
为了解决时间异步无线传感器网络在目标跟踪时的节点协作管理和跟踪时间配准问题,提出了一种适用于时间异步条件下目标跟踪的动态成簇算法。该方法通过分析目标的无线信号强度和各节点至目标的距离来动态组建跟踪簇,然后依据目标及簇头的通信距离对簇头射频信号的覆盖区域进行功能划分,实现节点对目标的协作跟踪,同时以簇为跟踪时间的计算单元,通过簇内计时和簇间贯序传递的方法实现跟踪时间的配准。仿真实验表明,该算法进行目标跟踪时能有效均衡网络能耗,且具有较好的跟踪精度和系统鲁棒性。  相似文献   

9.
A simple mechanism to prolong the life cycle of the network by balancing nodes’ energy consumption is to rotate the active dominating set (DS) through a set of legitimate DSs. This paper proposes a novel adaptive clustering algorithm named HREF (Highest Remaining Energy First). In the HREF algorithm, cluster formation is performed cyclically and each node can declare itself as a cluster head autonomously if it has the largest residual energy among all its adjacent nodes. The performance effectiveness of the HREF algorithm is investigated and compared to the D-WCDS (Disjoint Weakly Connected Dominating Set) algorithm. In this paper, we assume the network topology is fixed and does not require sensor mobility. This allows us to focus on the impact of clustering algorithms on communication between network nodes rather than with the base station. Simulation results show that in the D-WCDS algorithm energy depletion is more severe and the variance of the node residual energy is also much larger than that in the HREF algorithm. That is, nodes’ energy consumption in the HREF algorithm is in general more evenly distributed among all network nodes. This may be regarded as the main advantage of the HREF adaptive clustering algorithm.  相似文献   

10.
Wireless sensor network (WSN) has been widely used due to its vast range of applications. The energy problem is one of the important problems influencing the complete application. Sensor nodes use very small batteries as a power source and replacing them is not an easy task. With this restriction, the sensor nodes must conserve their energy and extend the network lifetime as long as possible. Also, these limits motivate much of the research to suggest solutions in all layers of the protocol stack to save energy. So, energy management efficiency becomes a key requirement in WSN design. The efficiency of these networks is highly dependent on routing protocols directly affecting the network lifetime. Clustering is one of the most popular techniques preferred in routing operations. In this work we propose a novel energy-efficient protocol for WSN based on a bat algorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithm for WSN) to prolong the network lifetime. We use an objective function that generates an optimal number of sensor clusters with cluster heads (CH) to minimize energy consumption. The performance of the proposed approach is compared with Low-Energy Adaptive Clustering Hierarchy (LEACH) and Energy Efficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interesting in terms of energy-saving and prolongation of the network lifetime.  相似文献   

11.
提出一种新的基于非对称往返测距的海洋无线传感网络节点定位(LMARR)算法,该算法利用节点间非对称的接收与发送测距信息的时间差,推算出节点间海水声速以及未知节点与其邻居参考节点之间的距离,将三维距离信息转换成二维,运用最小二乘法完成定位计算。与SWN和ARTL算法相比较,仿真结果表明:LMARR算法能有效地提高节点定位的精度,特别是在深度为20~120m海水声速持续变化的区域,定位精度比SWN算法提高了20%,比ARTL算法提高了33%;此外,LMARR算法还具有较高的稳定性。  相似文献   

12.
Wireless Sensor Networks (WSNs) have hardware and software limitations and are deployed in hostile environments. The problem of energy consumption in WSNs has become a very important axis of research. To obtain good performance in terms of the network lifetime, several routing protocols have been proposed in the literature. Hierarchical routing is considered to be the most favorable approach in terms of energy efficiency. It is based on the concept parent-child hierarchy where the child nodes forward their messages to their parent, and then the parent node forwards them, directly or via other parent nodes, to the base station (sink). In this paper, we present a new Energy-Efficient clustering protocol for WSNs using an Objective Function and Random Search with Jumps (EEOFRSJ) in order to reduce sensor energy consumption. First, the objective function is used to find an optimal cluster formation taking into account the ratio of the mean Euclidean distance of the nodes to their associated cluster heads (CH) and their residual energy. Then, we find the best path to transmit data from the CHs nodes to the base station (BS) using a random search with jumps. We simulated our proposed approach compared with the Energy-Efficient in WSNs using Fuzzy C-Means clustering (EEFCM) protocol using Matlab Simulink. Simulation results have shown that our proposed protocol excels regarding energy consumption, resulting in network lifetime extension.  相似文献   

13.
针对LEACH协议在簇头选择过程中消耗能量多和节点间能量消耗不均匀的问题,本文提出了一种基于时间的均匀分簇混合路由协议( ECHT)在簇头竞选阶段中,节点广播成为簇头的时间与其剩余能量成反比,越早广播的节点将成为簇头.在数据传输阶段中,采用多跳与单跳相结合的方式将数据传送到基站,并计算数据传送开销来修改节点能量以此确定网络生命周期.仿真结果显示,ECHT协议能有效地均衡网络节点的能量消耗和延长网络生命周期.  相似文献   

14.
Wireless sensor networks (WSNs) consist of small nodes that are capable of sensing, computing, and communication. One of the greatest challenges in WSNs is the limitation of energy resources in nodes. This limitation applies to all of the protocols and algorithms that are used in these networks. Routing protocols in these networks should be designed considering this limitation. Many papers have been published examining low energy consumption networks. One of the techniques that has been used in this context is cross-layering. In this technique, to reduce the energy consumption, layers are not independent but they are related to each other and exchange information with each other. In this paper, a cross-layer design is presented to reduce the energy consumption in WSNs. In this design, the communication between the network layer and medium access layer has been established to help the control of efforts to access the line to reduce the number of failed attempts. In order to evaluate our proposed design, we used the NS2 software for simulation. Then, we compared our method with a cross-layer design based on an Ad-hoc On-demand Distance Vector routing algorithm. Simulation results show that our proposed idea reduces energy consumption and it also improves the packet delivery ratio and decreases the end-to-end delay in WSNs.  相似文献   

15.
Wireless Sensor Networks (WSNs) are an integral part of the Internet of Things (IoT) and are widely used in a plethora of applications. Typically, sensor networks operate in harsh environments where human intervention is often restricted, which makes battery replacement for sensor nodes impractical. Node failure due to battery drainage or harsh environmental conditions poses serious challenges to the connectivity of the network. Without a connectivity restoration mechanism, node failures ultimately lead to a network partition, which affects the basic function of the sensor network. Therefore, the research community actively concentrates on addressing and solving the challenges associated with connectivity restoration in sensor networks. Since energy is a scarce resource in sensor networks, it becomes the focus of research, and researchers strive to propose new solutions that are energy efficient. The common issue that is well studied and considered is how to increase the network’s life span by solving the node failure problem and achieving efficient energy utilization. This paper introduces a Cluster-based Node Recovery (CNR) connectivity restoration mechanism based on the concept of clustering. Clustering is a well-known mechanism in sensor networks, and it is known for its energy-efficient operation and scalability. The proposed technique utilizes a distributed cluster-based approach to identify the failed nodes, while Cluster Heads (CHs) play a significant role in the restoration of connectivity. Extensive simulations were conducted to evaluate the performance of the proposed technique and compare it with the existing techniques. The simulation results show that the proposed technique efficiently addresses node failure and restores connectivity by moving fewer nodes than other existing connectivity restoration mechanisms. The proposed mechanism also yields an improved field coverage as well as a lesser number of packets exchanged as compared to existing state-of-the-art mechanisms.  相似文献   

16.
Wireless sensor networks provide new tools for sensing physical environments. However, the general existence of faulty sensor measurements in networks will cause degradation of the network service quality and huge burden of the precious energy. While cryptography-based approaches are helpless of information generation, reputation systems are demonstrated of positive results. In this paper, we investigate the benefits of a distributed reputation system in target localization. A node reputation is defined as its measurement performance and is computed by the Dirichlet distribution. By assuming the sensing model of each node to be mixed Gaussian, we use reputation to estimate parameters of the sensing model and modify a node's original measurement. We also develop a reputation-based local voting algorithm to filter the untrustworthy data and then estimate the target location by a particle swarm optimization algorithm. To assure energy efficiency of the proposed approach, we use a reputation-based model to indicate the information importance of each data packet and ensure that a more important packet can be delivered with higher reliability. Finally, we experimentally evaluate the reputation system and demonstrate its accuracy and energy efficiency.   相似文献   

17.
Wireless sensor networks (WSN) encompass a set of inexpensive and battery powered sensor nodes, commonly employed for data gathering and tracking applications. Optimal energy utilization of the nodes in WSN is essential to capture data effectively and transmit them to destination. The latest developments of energy efficient clustering techniques can be widely applied to accomplish energy efficiency in the network. In this aspect, this paper presents an enhanced Archimedes optimization based cluster head selection (EAOA-CHS) approach for WSN. The goal of the EAOA-CHS method is to optimally choose the CHs from the available nodes in WSN and then organize the nodes into a set of clusters. Besides, the EAOA is derived by the incorporation of the chaotic map and pseudo-random performance. Moreover, the EAOA-CHS technique determines a fitness function involving total energy consumption and lifetime of WSN. The design of EAOA for CH election in the WSN depicts the novelty of work. In order to exhibit the enhanced efficiency of EAOA-CHS technique, a set of simulations are applied on 3 distinct conditions dependent upon the place of base station (BS). The simulation results pointed out the better outcomes of the EAOA-CHS technique over the recent methods under all scenarios.  相似文献   

18.
In the field of energy conversion, the increasing attention on power electronic equipment is fault detection and diagnosis. A power electronic circuit is an essential part of a power electronic system. The state of its internal components affects the performance of the system. The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits. Therefore, an algorithm based on adaptive simulated annealing particle swarm optimization (ASAPSO) was used in the present study to optimize a backpropagation (BP) neural network employed for the online fault diagnosis of a power electronic circuit. We built a circuit simulation model in MATLAB to obtain its DC output voltage. Using Fourier analysis, we extracted fault features. These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization (PSO) and the ASAPSO algorithm. The accuracy of fault diagnosis was compared for the three networks. The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy, better reliability, and adaptability and can more effectively diagnose and locate faults in power electronic circuits.  相似文献   

19.
Wireless Sensor Networks (WSNs) are large-scale and high-density networks that typically have coverage area overlap. In addition, a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area, which leads to coverage holes in WSNs. Thus, coverage control plays an important role in WSNs. To alleviate unnecessary energy wastage and improve network performance, we consider both energy efficiency and coverage rate for WSNs. In this paper, we present a novel coverage control algorithm based on Particle Swarm Optimization (PSO). Firstly, the sensor nodes are randomly deployed in a target area and remain static after deployment. Then, the whole network is partitioned into grids, and we calculate each grid’s coverage rate and energy consumption. Finally, each sensor nodes’ sensing radius is adjusted according to the coverage rate and energy consumption of each grid. Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption  相似文献   

20.
姜卫东  雷辉  郭勇 《声学技术》2014,33(2):176-179
针对水声传感器网络的簇间路由选择问题,提出了一种基于前向网关的低时延能耗均衡路由算法,该算法采用最优方向角原则和能耗均衡原则选择中继簇头和中继网关,以减小长延迟和高能耗对水声通信的影响。仿真结果表明该算法在网络平均能耗、端到端时延和网络生命周期等方面具有较好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号