共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 为了提高锂电池丝印图像配准精度,从而解决产品质量检测中的漏检和误报问题,研究点特征提取算法在锂电池丝印图像配准中的应用.方法 对基于点特征的锂电池丝印图像配准进行综述,首先概述点特征提取算法的发展历程,然后着重围绕Harris,SIFT,SURF,ORB和AKAZE等5种经典的点特征提取算法进行分析,并介绍近几年的提升算法,最后对锂电池丝印图像进行配准测试,利用几种测评技术对实验效果进行分析,总结不同点特征提取算法在锂电池丝印图像配准中的优缺点和适用性.结果 实验结果表明,AKAZE算法提取的特征点具有较高的重复率和匹配准确率,经过配准后的定位误差也都控制在1个像素以内,但是该算法的尺度不变性较差.结论 相较于前4种算法,AKAZE算法具有较高的可靠性和稳定性,能够满足锂电池丝印图像配准的实时性和高效性需求. 相似文献
2.
3.
Suting Peng Wei Chen Jiawei Sun Boqiang Liu 《International journal of imaging systems and technology》2020,30(1):5-17
Gliomas segmentation is a critical and challenging task in surgery and treatment, and it is also the basis for subsequent evaluation of gliomas. Magnetic resonance imaging is extensively employed in diagnosing brain and nervous system abnormalities. However, brain tumor segmentation remains a challenging task, because differentiating brain tumors from normal tissues is difficult, tumor boundaries are often ambiguous and there is a high degree of variability in the shape, location, and extent of the patient. It is therefore desired to devise effective image segmentation architectures. In the past few decades, many algorithms for automatic segmentation of brain tumors have been proposed. Methods based on deep learning have achieved favorable performance for brain tumor segmentation. In this article, we propose a Multi-Scale 3D U-Nets architecture, which uses several U-net blocks to capture long-distance spatial information at different resolutions. We upsample feature maps at different resolutions to extract and utilize sufficient features, and we hypothesize that semantically similar features are easier to learn and process. In order to reduce the computational cost, we use 3D depthwise separable convolution instead of some standard 3D convolution. On BraTS 2015 testing set, we obtained dice scores of 0.85, 0.72, and 0.61 for the whole tumor, tumor core, and enhancing tumor, respectively. Our segmentation performance was competitive compared to other state-of-the-art methods. 相似文献
4.
Rahul Sharma Amar Singh Kavita N. Z. Jhanjhi Mehedi Masud Emad Sami Jaha Sahil Verma 《计算机、材料和连续体(英文)》2022,71(2):2125-2140
Indian agriculture is striving to achieve sustainable intensification, the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem. Modern farming employs technology to improve productivity. Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity. Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost, approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert's opinion. Deep learning-based computer vision techniques like Convolutional Neural Network (CNN) and traditional machine learning-based image classification approaches are being applied to identify plant diseases. In this paper, the CNN model is proposed for the classification of rice and potato plant leaf diseases. Rice leaves are diagnosed with bacterial blight, blast, brown spot and tungro diseases. Potato leaf images are classified into three classes: healthy leaves, early blight and late blight diseases. Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study. The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58% accuracy and potato leaves with 97.66% accuracy. The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree and Random Forest. 相似文献
5.
6.
7.
Walid El-Shafai Noha A. El-Hag Ahmed Sedik Ghada Elbanby Fathi E. Abd El-Samie Naglaa F. Soliman Hussah Nasser AlEisa Mohammed E. Abdel Samea 《计算机、材料和连续体(英文)》2023,74(2):2905-2919
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy. Deep learning provides a high performance for several medical image analysis applications. This paper proposes a deep learning model for the medical image fusion process. This model depends on Convolutional Neural Network (CNN). The basic idea of the proposed model is to extract features from both CT and MR images. Then, an additional process is executed on the extracted features. After that, the fused feature map is reconstructed to obtain the resulting fused image. Finally, the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching (HM), Histogram Equalization (HE), fuzzy technique, fuzzy type Π, and Contrast Limited Histogram Equalization (CLAHE). The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality. Different realistic datasets of different modalities and diseases are tested and implemented. Also, real datasets are tested in the simulation analysis. 相似文献
8.
针对发生较大角度旋转及平移时图像配准精度不高,图像配准对局部形变和光照较为敏感的问题,本文提出了基于直线和SURF特征的图像分区域配准算法。首先利用Hough变换实现图像的粗配准;然后对图像进行分区,在子区域内利用SURF算子求取变换模型参数,完成图像的配准。实验表明该方法可用于红外与可见光图像的配准,与传统方法相比,本方法能够在图像存在大角度旋转和平移时实现高精度配准,且在图像存在局部形变及光照不均时精度较好。 相似文献
9.
Sitara Afzal Muazzam Maqsood Irfan Mehmood Muhammad Tabish Niaz Sanghyun Seo 《计算机、材料和连续体(英文)》2021,66(3):2301-2315
Cerebral Microbleeds (CMBs) are microhemorrhages caused by certain abnormalities of brain vessels. CMBs can be found in people with Traumatic Brain Injury (TBI), Alzheimer’s disease, and in old individuals having a brain injury. Current research reveals that CMBs can be highly dangerous for individuals having dementia and stroke. The CMBs seriously impact individuals’ life which makes it crucial to recognize the CMBs in its initial phase to stop deterioration and to assist individuals to have a normal life. The existing work report good results but often ignores false-positive’s perspective for this research area. In this paper, an efficient approach is presented to detect CMBs from the Susceptibility Weighted Images (SWI). The proposed framework consists of four main phases (i) making clusters of brain Magnetic Resonance Imaging (MRI) using k-mean classifier (ii) reduce false positives for better classification results (iii) discriminative feature extraction specific to CMBs (iv) classification using a five layers convolutional neural network (CNN). The proposed method is evaluated on a public dataset available for 20 subjects. The proposed system shows an accuracy of 98.9% and a 1.1% false-positive rate value. The results show the superiority of the proposed work as compared to existing states of the art methods. 相似文献
10.
针对水下多目标方位估计问题,提出了一种利用卷积神经网络模型对目标声源进行方位估计的方法。该方法使用不等强度的声源数据进行训练并使用焦点损失函数作为训练损失函数。通过对阵列接收到的信号进行特征提取,使用焦点损失函数指导卷积神经网络训练,最终利用训练好的卷积神经网络模型进行目标方位估计。对不同模型参数的训练进行对比,结果表明所训练的卷积神经网络模型在较低信噪比条件下也能正确估计弱目标的方位。试验结果表明,与采用二元交叉熵损失函数的卷积神经网络模型相比,该方法对弱目标的方位估计能力更强,提高了方位估计的准确率。 相似文献
11.
12.
Pallabi Sharma Dipankar Das Anmol Gautam Bunil Kumar Balabantaray 《International journal of imaging systems and technology》2023,33(2):495-510
The traditional process of disease diagnosis from medical images follows a manual process, which is tedious and arduous. A computer-aided diagnosis (CADs) system can work as an assistive tool to improve the diagnosis process. In this pursuit, this article introduces a unique architecture LPNet for classifying colon polyps from the colonoscopy video frames. Colon polyps are abnormal growth of cells in the colon wall. Over time, untreated colon polyps may cause colorectal cancer. Different convolutional neural networks (CNNs) based systems have been developed in recent years. However, CNN uses pooling to reduce the number of parameters and expand the receptive field. On the other hand, pooling results in data loss and is deleterious to subsequent processes. Pooling strategies based on discrete wavelet operations have been proposed in our architecture as a solution to this problem, with the promise of achieving a better trade-off between receptive field size and computing efficiency. The overall performance of this model is superior to the others, according to experimental results on a colonoscopy dataset. LPNet with bio-orthogonal wavelet achieved the highest performance with an accuracy of 93.55%. It outperforms the other state-of-the-art (SOTA) CNN models for the polyps classification task, and it is lightweight in terms of the number of learnable parameters compared with them, making the model easily deployable in edge devices. 相似文献
13.
Jaber S. Alzahrani Reem M. Alshehri Mohammad Alamgeer Anwer Mustafa Hilal Abdelwahed Motwakel Ishfaq Yaseen 《计算机、材料和连续体(英文)》2022,72(3):4267-4281
Recently, medical data classification becomes a hot research topic among healthcare professionals and research communities, which assist in the disease diagnosis and decision making process. The latest developments of artificial intelligence (AI) approaches paves a way for the design of effective medical data classification models. At the same time, the existence of numerous features in the medical dataset poses a curse of dimensionality problem. For resolving the issues, this article introduces a novel feature subset selection with artificial intelligence based classification model for biomedical data (FSS-AICBD) technique. The FSS-AICBD technique intends to derive a useful set of features and thereby improve the classifier results. Primarily, the FSS-AICBD technique undergoes min-max normalization technique to prevent data complexity. In addition, the information gain (IG) approach is applied for the optimal selection of feature subsets. Also, group search optimizer (GSO) with deep belief network (DBN) model is utilized for biomedical data classification where the hyperparameters of the DBN model can be optimally tuned by the GSO algorithm. The choice of IG and GSO approaches results in promising medical data classification results. The experimental result analysis of the FSS-AICBD technique takes place using different benchmark healthcare datasets. The simulation results reported the enhanced outcomes of the FSS-AICBD technique interms of several measures. 相似文献
14.
15.
目的 解决大面积破损难以修复且修复过程中感受野、特征空间信息利用不足,导致修复后的孔洞区域与背景之间出现结构、纹理、风格不一致的问题。方法 基于傅里叶卷积和多特征调制的修复网络FFC-MFMGAN,傅里叶卷积在网络的浅层便具有较大的感受野,尤其是在宽掩码时能够跳过掩码区域,捕获到有效特征,多特征调制生成网络能够分别利用完整区域的信息和随机样式操纵,增强与未受损区域的语义连贯性,以及大空洞率下修复的多样性。结果 在Place 2数据集上,将文中方法与其他图像修复方法进行了对比实验,经过测试,各类指标均得到明显改善,峰值信噪比提高了1.4%,结构相似性提高了4.5%,平均绝对误差降低了12.6%,基于学习的感知图像块相似性降低了9.1%。结论 FFC-MFMGAN网络能够较好地修复大面积不规则孔洞,同时增强修复图像的全局结构性和清晰度,对实际包装印刷图像的缺陷修复也有一定参考价值。 相似文献
16.
17.
18.
Muhammed Yildirim;Hurşit Burak Mutlu; 《International journal of imaging systems and technology》2024,34(2):e23057
Osteoarthritis (OA) means that the slippery cartilage tissue that covers the bone surfaces in the joints and allows the joint to move easily loses its properties and wears out. Knee OA is the wear and tear of the cartilage in the knee joint. Knee OA is a disease whose incidence increases especially after a certain age. Knee OA is difficult and costly to be detected by specialists using traditional methods and may lead to misdiagnosis. In this study, computer-aided systems were used to prevent errors in traditional methods of detecting knee OA, shorten the diagnosis time, and accelerate the treatment process. In this study, a hybrid model was developed by using Darknet53, Histogram of Directional Gradients (HOG), Local Binary Model (LBP) methods for feature extraction, and Neighborhood Component Analysis (NCA) for feature selection. Our dataset used in experiments contains 1650 knee joint images and consists of five classes: Normal, Doubtful, Mild, Moderate, and Severe. In the experimental studies performed, the performance of the proposed method was compared with eight different Convolutional Neural Networks (CNN) Models. The developed model achieved better performance metrics than the eight different models used in the study and similar studies in the literature. The accuracy value of the developed model is 83.6%. 相似文献
19.
R. S. Chithra P. Jagatheeswari 《International journal of imaging systems and technology》2020,30(4):994-1011
Tuberculosis (TB) is a highly infectious disease and is one of the major health problems all over the world. The accurate detection of TB is a major challenge faced by most of the existing methods. This work addresses these issues and developed an effective mechanism for detecting TB using deep learning. Here, the color space transformation is applied for transforming the red green and blue image to LUV space, where L stands for luminance, U and V represent chromaticity values of color images. Then, adaptive thresholding is carried out for image segmentation and various features, like coverage, density, color histogram, area, length, and texture features, are extracted to enable effective classification. After the feature extraction, the size of the features is reduced using principal component analysis. The extracted features are subjected to fractional crow search-based deep convolutional neural network (FC-SVNN) for the classification. Then, the image level features, like bacilli count, bacilli area, scattering coefficients and skeleton features are considered to perform severity detection using proposed adaptive fractional crow (AFC)-deep CNN. Finally, the inflection level is determined using entropy, density and detection percentage. The proposed AFC-Deep CNN algorithm is designed by modifying FC algorithm using self-adaptive concept. The proposed AFC-Deep CNN shows better performance with maximum accuracy value as 0.935. 相似文献
20.
基于三角形几何相似性的图像配准与拼接 总被引:2,自引:3,他引:2
介绍了一种基于三角形几何相似性的图像配准方法.提取两幅待拼接图像的特征点,将每幅图像各自的重叠区域内或图像内容复杂情况下的选定区域内的特征点任意组合为三角形,得到分别对应于每一幅图像的三角形集合.然后根据定义的新的三角形表示方法,包括最大角方向和最小角方向,在两组三角形集合内层层筛选任意组合的三角形对,最终找到其中的匹配三角形对,即相似三角形对,从而找到匹配的点对.最后计算图像间变换矩阵,对图像进行拼接,得到了一张具有更宽视野的无缝拼接图.该方法只与特征点间相互几何位置有关,所以对两幅图像间的灰度差异、任意的旋转、缩放等都表现了很强的鲁棒性. 相似文献