首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 435 毫秒
1.
针对风力发电“弃风”电量耦合制氢问题,提出一种基于链式分配策略的风氢耦合系统。首先建立能表征弃风电量与质子交换膜电解槽主要特性的风氢耦合拓扑电路结构,围绕高降压比交错Buck变换器及其控制方法构建风氢耦合系统,并提出多堆质子交换膜电解槽风氢耦合系统链式功率分配策略。最后通过算例仿真验证该系统可提升弃风利用率和系统可靠性,可有效解决弃风电量水电解制氢耦合控制与功率分配问题。  相似文献   

2.
为促进风电消纳,减少“弃风”,将电池储能系统(BESS)接入电热联合系统。为考虑风功率的不确定性,基于风功率预测误差的概率特性建立风功率场景概率模型。然后,建立包含BESS的电热联合系统风电接纳能力评估模型。模型具有系统运行成本最低和“弃风”电量最小2个不同维度优化目标,且目标优化之间可能存在冲突。为求解该模型,基于改进主要目标法将其转换为多个单目标优化问题,并采用GAMS中DICOPT求解器给出风电接纳能力评估模型的帕累托解集。基于帕累托解集,从接纳电量和接纳成本两方面对BESS接入后的电热联合系统风电接纳能力进行深入分析。最后进行仿真分析,验证了该文所提模型及求解算法的有效性。  相似文献   

3.
围绕目前主流的绿色制氢技术,综述国内外“绿氢”技术的最新研究进展,重点阐述电解水制氢技术(碱性电解水法、质子交换膜电解水法、固体氧化物电解水法)、太阳能分解水制氢技术(光催化法、光热分解法、光电化学法)以及生物质制氢技术(热化学转化法、微生物法)的产氢原理、技术难点和改进方法等,讨论比较各类“绿氢”技术的优缺点,分析未来绿色制氢技术的应用前景和发展方向。  相似文献   

4.
王振浩  马爽  李国庆  边竞 《太阳能学报》2022,43(10):400-408
为提高电力系统对光伏的接纳能力,降低光伏波动对电力系统运行的影响,提出一种考虑电池储能-抽水蓄能复合储能的电力系统日前-日内两阶段“源-储-荷”协调优化调度策略。首先,在日前调度模型中,以最小化系统总运行经济成本为目标,综合复合储能资源和负荷侧各类需求响应资源对电网进行双端协调优化。然后,在日内短时间尺度上,供需双端协调优化机组出力与需求侧响应,充分发挥抽水蓄能的调峰能力以及电池储能对光伏波动的抑制作用。所提模型通过CPLEX软件求解,算例结果验证了该模型能协调优化系统内各类可调节资源,有效降低系统弃光率。  相似文献   

5.
光伏发电的最大功率跟踪算法研究   总被引:21,自引:1,他引:20  
太阳能光伏阵列的输出特性受外界环境因素的影响,为了跟踪太阳能光伏阵列输出功率最大点,实现光伏阵列和负载的匹配,常在系统中加入最大功率跟踪器。准确跟踪太阳能光伏阵列的最大输出功率点依赖于有效的搜索算法。分析了传统的扰动观察法和增量电导法的特点,并提出了一种新的变步长寻优算法。通过验证表明,这种算法能够快速准确地跟踪最大功率点。  相似文献   

6.
光伏作为大力发展的零碳能源之一,是“双碳”目标达成的主力军,有必要对生态光伏模式进行研究。在总结分析光伏阵列对气象、土壤和植被的影响,光伏电站区域的固碳增汇效益和生态系统服务价值估算研究现状的基础上,从成本约束下的生态-经济效益最大化和固碳效益最优化角度,提出了生态光伏的概念和内涵;基于脆弱区域特征,融合生态系统过程模型和InVEST效益核算模型,构建基于“双碳”目标的脆弱区域生态光伏模式。研究结果可为光伏发电与脆弱区域生态修复双重效益核算,开发路径识别,行业标准出台提供参考。  相似文献   

7.
针对弃风严重以及传统供暖方式存在难以“热电解耦”的问题,提出一种将蓄热式电锅炉、燃气锅炉、吸收式制冷机相结合的“电气互补-冷热联供”弃风消纳模式。首先,根据弃风和冷热负荷特性建立“电气互补-冷热联供”模型;然后,考虑供暖与制冷成本,构建“电气互补-冷热联供”经济性模型;最后,通过算例分析与传统“燃气锅炉-空调”供暖制冷模型的经济性进行对比。结果表明:所提模式可在消纳弃风的同时减少碳排放量,达到提升系统收益的目的。  相似文献   

8.
以氢气为主要燃料的质子交换膜燃料电池是一种良好的清洁能源利用介质,为应对“双碳目标”的挑战,提出基于质子交换膜燃料电池与电转气(P2G)混合储能并考虑系统中风电、光伏出力不确定性因素的综合能源系统模型。首先,对膜燃料电池进行精细化建模分析;其次,对风电、光伏等新能源采取基于小波变换-神经网络的短期预测;最后,建立包含设备运行维护成本、实时电价政策的外购能源等经济成本以及碳惩罚成本的最小优化目标的混合整数线性规划模型,且以系统安全稳定运行为约束。某园区的算例分析结果表明,所提出的考虑新能源出力与PEMFC-P2G混合储能优化模型能有效降低运行成本、减少碳排放,具有良好的经济性与环保性。  相似文献   

9.
质子交换膜(PEM)水电解制氢技术是采用绿电制取绿氢的重要方法,对我国实现双碳目标具有重要意义。优化运行参数是降低PEM水电解制氢系统能耗的一种重要途径。建立一套工业级PEM水电解制氢实验装置,通过现场实验,考察电流密度和运行温度对PEM水电解制氢系统能耗的影响,探讨优化运行参数降低运行能耗的方法。结果表明,当电流密度为0.2~1.4 A/cm2、运行温度为20~60℃,PEM水电解制氢系统单位能耗分别与电流密度、运行温度负相关。提高运行温度会引起电解电压下降,系统单位直流能耗显著降低。提高电流密度会造成系统单位直流能耗升高,而单位交流能耗降低。  相似文献   

10.
基于含光伏阵列和混合储能系统的直流微电网系统,提出了一种基于实时功率判别的直流微电网协调控制策略。该控制策略以光伏阵列输出和负荷消耗的功率差为基准,结合混合储能SOC状态,自动调节混合储能充放电方向、功率、直流微网工作模式。系统工作模式的切换由系统实时功率信号决定,提高了微网系统运行的可靠性。Matlab/Simulink仿真结果验证了该控制策略的有效性和可行性。  相似文献   

11.
Hydrogen fuel for fuel cell vehicles can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In the past, this renewable means of hydrogen production has suffered from low efficiency (2–6%), which increased the area of the PV array required and therefore, the cost of generating hydrogen. A comprehensive mathematical model was developed that can predict the efficiency of a PV-electrolyzer combination based on operating parameters including voltage, current, temperature, and gas output pressure. This model has been used to design optimized PV-electrolyzer systems with maximum solar energy to hydrogen efficiency. In this research, the electrical efficiency of the PV-electrolysis system was increased by matching the maximum power output and voltage of the photovoltaics to the operating voltage of a proton exchange membrane (PEM) electrolyzer, and optimizing the effects of electrolyzer operating current, and temperature. The operating temperature of the PV modules was also an important factor studied in this research to increase efficiency. The optimized PV-electrolysis system increased the hydrogen generation efficiency to 12.4% for a solar powered PV-PEM electrolyzer that could supply enough hydrogen to operate a fuel cell vehicle.  相似文献   

12.
The production of electricity and hydrogen in a renewable fashion, such as using solar energy, can provide a clean and sustainable energy source for electric-powered vehicles, including fuel-cell and battery-electric vehicles. Our research on generating hydrogen and charging batteries using renewable solar photovoltaic (PV) electricity has led to the development of a simple and convenient new metric called the coupling factor that describes the fraction of the maximum PV power transferred to electrical loads. The keystone of the coupling factor concept is a regression model to calculate the maximum PV voltage, current, and power as a function of the instantaneous incident solar irradiance and the photovoltaic module temperature. The coupling factor can range from zero to one, i.e., no transfer of power from the PV system to the load, to complete transfer of the PV power. We describe the derivation of regression models to compute important PV electrical output variables, such as the open circuit voltage, the short circuit current, the maximum power point voltage, the maximum power point current, and the coupling factor as a function of the fundamental measured variables affecting those quantities. The models are derived for PV modules used in our previous research to power an electrolyzer and charge high-voltage batteries. In addition, we develop models for other modules using PV cell technologies different from those used in our PV system. Some of the calculated quantities are compared to measurements for our PV system. The usefulness of these quantities, and especially the coupling factor, in rating the transfer of PV power to electrolyzer and battery loads, is illustrated. Finally, we discuss how the predicted maximum power point voltage can be used for real-time control and efficiency optimization of a dynamic PV-load system.  相似文献   

13.
A method for optimal sizing of an electrolyzer directly connected to a PV module or array is presented. By combining the electrolyzer cells in series and in parallel it is possible to closely match the electrolyzer polarization curve to the curve connecting PV system’s maximum power points at different irradiation levels. The method presented here is based on linear approximation of both curves. With such a method it is possible to achieve the power transfer efficiency of up to 99%. The effect of PV temperature on optimum electrolyzer sizing is also investigated. The optimum electrolyzer size decreases with the increase of the PV temperature for the same PV system size. It was found that it is better (in terms of the system efficiency and the hydrogen generation rate) to size the EL system for a higher PV operating temperature.  相似文献   

14.
A prototype water electrolyzer designed to operate from a solar photovoltaic (PV) array without power conditioning was operated for three months at the Florida Solar Energy Center. A 1 kWpk PV array was used to operate the electrolyzer at internal gas pressure from 0 to 40 psig. Performance of the electrolyzer/PV array was measured and characterized in terms of charge efficiency and power efficiency calculated from the operating data. The economics of residential production of hydrogen for energy purposes were calculated and summarized. While the near-term outlook for this energy storage technique was not found to be favorable, the long-term outlook was encouraging.  相似文献   

15.
An electrolyzer/fuel cell energy storage system is a promising alternative to batteries for storing energy from solar electric power systems. Such a system was designed, including a proton-exchange membrane (PEM) electrolyzer, high-pressure hydrogen and oxygen storage, and a PEM fuel cell. The system operates in a closed water loop. A prototype system was constructed, including an experimental PEM electrolyzer and combined gas/water storage tanks. Testing goals included general system feasibility, characterization of the electrolyzer performance (target was sustainable 1.0 A/cm2 at 2.0 V per cell), performance of the electrolyzer as a compressor, and evaluation of the system for direct-coupled use with a PV array. When integrated with a photovoltaic array, this type of system is expected to provide reliable, environmentally benign power to remote installations. If grid-coupled, this system (without PV array) would provide high-quality backup power to critical systems such as telecommunications and medical facilities.  相似文献   

16.
Recently, the Solar-hydrogen energy system (SHES) becomes a reality thanks as well as a very common topic to energy research in Egypt as it is now being the key solution of different energy problems including global warming, poor air quality and dwindling reserves of liquid hydrocarbon fuels. Hydrogen is a flexible storage medium for energy and can be generated by the electrolysis of water. It is more particularly advantageous and efficient when the electrolyzer is simply coupled to a source of renewable electrical energy. This paper examines the operation of alkaline water electrolysis coupled with solar photovoltaic (PV) source for hydrogen generation with emphasis on the electrolyzer efficiency. PV generator is simulated using Matlab/Simulink to obtain its characteristics under different operating conditions with solar irradiance and temperature variations. The experimental alkaline water electrolysis system is built in the fluid mechanics laboratory of Menoufiya University and tested at certain input voltages and currents which are fed from the PV generator. The effects of voltage, solution concentration of electrolyte and the space between the pair of electrodes on the amount of hydrogen produced by water electrolysis as well as the electrolyzer efficiency are experimentally investigated. The water electrolysis of different potassium hydroxide aqueous solutions is conducted under atmospheric pressure using stainless steel electrodes. The experimental results showed that the performance of water electrolysis unit is highly affected by the voltage input and the gap between the electrodes. Higher rates of produced hydrogen can be obtained at smaller space between the electrodes and also at higher voltage input. The maximum electrolyzer efficiency is obtained at the smallest gap between electrodes, however, for a specified input voltage value within the range considered.  相似文献   

17.
针对合理规划离网型风/光-火联合供能系统使其达到碳中和要求的问题,首先考虑风光出力不确定性对新能源为主的离网型供能系统可靠性的影响,提出离网型风/光-火联合供能系统的基本结构;其次,基于自然界可消纳CO2上限与世界能源需求总量之间的关系,建立供能系统的碳自然循环模型;以系统年总费用值最小为目标,建立供能系统容量优化配置数学模型,并采用粒子群算法求解。基于某实际离网型联合供能系统算例分析表明:所述容量优化配置方法在以较低成本保证供能可靠性的同时,可实现离网型风/光-火联合供能系统CO2的“净零排放”。  相似文献   

18.
The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.  相似文献   

19.
为实现燃料电池混合动力有轨电车的经济运行,提出以燃料电池为增程式动力源的运行模式,并通过步进式枚举法对电源系统进行优化配置.首先,定义燃料电池混合动力有轨电车的运行模式及电源系统混合度,构建各电源系统模型;然后,建立电源系统全寿命周期综合成本函数,并考虑约束条件对电源系统进行优化配置;最后,以全寿命周期经济性、充电桩容...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号