首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
潘子宇  杨洁  郭楠 《信号处理》2019,35(7):1259-1265
本文针对小基站网络立体分布特性,采用全新的三维视角分析小基站网络架构,提出了一种基于三维泊松点过程(3-D Poison Point Process,3-D PPP)的上行小基站网络模型。其核心思想是将移动台和小基站分别描述成两个独立的3-D PPP模型。首先,本文推导了小基站网络上行覆盖概率的数学表达式。接下来,基于覆盖概率的表达式,推导了上行平均信道容量的闭合表达式。通过一系列合理的假设,上行覆盖概率以及信道容量可以通过快速积分直接计算。与传统的二维模型以及用户/小基站的实际布局相比较,本文提出的模型更接近实际,能够为覆盖概率和系统容量提供更贴近的边界值。   相似文献   

2.
王毅  钱叶旺  林艳  李春国  黄永明  杨绿溪 《信号处理》2016,32(11):1269-1282
为了分析时变信道特性对多用户分布式大规模MIMO系统的频谱效率性能影响,通过引入一阶高斯马尔科夫过程来建模时变信道,以时间相关性系数表征时变快慢程度。当系统采用最大比合并(MRC)接收和最大比发送(MRT)预编码方案时,借助于确定性等价原理以及Gamma分布随机变量的性质,推导出了含有信道时变信息的上行和下行频谱效率闭合表达式。同时,给出了当基站总发送天线数与用户个数之比趋于无穷大时,频谱效率的极限表达式。分析表明,频谱效率随时间相关系数减小而降低,但并不影响系统所获得的发射功率增益。数值仿真验证了所推导的频谱效率闭合表达式和极限值的有效性和精确性,并比较得出时变信道下分布式大规模MIMO比集中式大规模MIMO具有更好的性能。   相似文献   

3.
针对多层异构网络中基站簇造成的干扰问题,本文提出了一种对用户设备(user equipment,UE)进行分类建模的方法。首先,将处在通信热点区域的毫米波双层异构网络中密集部署的微微基站、毫微微基站以及UE构建成独立的非齐次泊松簇过程;然后,根据毫米波的特点建立了扇形天线模型和视距球传播模型并给出了簇内和簇间干扰的分布距离;此外,通过干扰的拉普拉斯变换以及信号与干扰加噪声比推导出基于UE分类和无UE分类的下行链路频谱效率解析表达式。仿真结果表明,所提出的基于UE分类方案的性能优于无UE分类方案的性能,显著提升了频谱效率。   相似文献   

4.
中继辅助终端直通(devicetodevice,D2D)网络通过与蜂窝网络共享频谱提高D2D用户的频谱效率和蜂窝用户(cellular user,CU)的物理层安全性。为进一步改善其性能,可以在基站和D2D链路的中继节点采用天线选择以及在中继节点采用全双工技术。然而,由于存在反馈时延和移动性,用于蜂窝链路和所有D2D链路天线选择的信道状态信息(channelstateinformation,CSI)均可能是过时的,针对该场景下的物理层安全性和可靠性问题,提出一种主动窃听和过时CSI场景下基站和中继节点均采用发射天线选择的全双工中继辅助D2D网络安全模型,推导CU的中断概率、遍历容量、非零安全容量概率、安全中断概率、渐近安全中断概率的解析表达式。数值计算与仿真结果均表明,基站发射天线数、中继干扰天线数越多,CU的安全性能越好;过时的CSI会降低CU的中断性能和安全性能。  相似文献   

5.
分析了智能反射面(IRS)辅助的星地融合认知网络系统的中断性能。首先,针对卫星采用点波束技术服务地球站,而基站通过智能反射面扩大通信范围,并采用非正交多址接入(NOMA)技术服务多用户场景,在系统采用认知无线电技术来实现卫星主网络与地面次级网络之间频谱共享的情况下,建立以地面用户平均信干噪比最大化为目标的优化问题;其次,基于角度域的信道状态信息提出了一种低复杂度的IRS相移设计方案,从而得到智能反射面相移矩阵;接着,分别推导出地面用户在固定和移动2种情况下的中断概率闭合表达式。为了进一步分析系统性能,推导了高信噪比条件下系统的中断概率近似表达式。最后,计算机仿真验证了中断概率表达式的正确性,并分析了主要参数对系统性能的影响。  相似文献   

6.
0引言 TDD系统最大的优势是频谱利用率更高,针对上下行业务不对称的情况,配置更加灵活.我国从3G时代开始到4G,中国移动的牌照都是TDD系统的.TDD系统由于上下行频谱是在同一频段内,且基站下行链路的发射功率较大,当出现外部干扰的情况时,干扰信号一般都会小于基站的信号.所以用频谱分析仪等设备进行干扰分析,干扰信号的频...  相似文献   

7.
5G新型双工演进技术将在TDD频谱上引入基站侧子带不重叠全双工制式,以迎合万物智联和工业互联网对低时延和大上行吞吐量同时提出的更高要求,同时还需要进一步研究并解决基站间交叉时隙干扰问题,使能公网和专网采用不同的TDD上下行时隙配比的组网方式。为满足5G新型双工演进技术的未来部署需求,对TDD宏微异时隙组网和子带不重叠全双工制式的潜在部署场景和相关干扰特征进行了分析和研究,提出潜在可行的干扰抑制方案,并通过链路预算、仿真评估和样机验证等形式论证了技术可行性。  相似文献   

8.
小小区组网技术被认为是解决迅速增长的移动数据量需求的方法。然而,密集的小小区组网会导致严重的小区间干扰。传统的部分频率复用方法不能完全照搬用在部署不规则的小小区网络内,急需一种合理高效建模采用频率复用小小区网络的方法,对其性能进行评估。利用随机几何理论对小小区网络考虑部分频率复用场景进行建模,推导了考虑部分频率复用的小小区网络下行覆盖概率和网络吞吐量的表达式。数值仿真结果显示:部分频率复用技术可以提高小小区网络下行覆盖概率,但是会降低网络图吞吐量。在满足覆盖概率约束条件下,得到了使得网络吞吐量最大的频率复用因子的表达式。以上结果对未来采用频率复用技术的小小区组网的具体实施具有重要的指导意义。  相似文献   

9.
智能天线及其在TD-LTE中的应用   总被引:4,自引:0,他引:4  
智能天线在基站进行各天线间的相干发送,实现信号的定向发送,可以提高信号的强度和覆盖,从而提升系统的整体性能。对于TDD系统,由于上下行信道共享同一发送频率,在相干时间内,可以认为上下行链路的信道互易,即信道经历相同的衰落。TDD 系统可以利用上下行信道的互易性,采用智能天线技术对 LTE-A 的整体性能进行增强。本文介绍智能天线技术在TD-LTE系统中的应用及其性能。  相似文献   

10.
为满足网络需求,提高系统频谱利用率,该文提出一种覆盖式认知非正交多址接入(CR-NOMA)网络。考虑实际中非线性功率放大(NLPA)、非理想连续干扰消除(ipSIC)和非完美信道状态信息(CSI)等非理性因素,研究所提网络的可靠性能,推导出系统中断概率(OP)和系统吞吐量的解析表达式,并进一步分析高信噪比下中断概率的表达式、理想状态下中断概率的高信噪比(SNR)近似、分集阶数。分析及仿真结果表明:NLPA, ipSIC和信道估计误差参数对系统中断概率性能有负面影响;中断概率随着信噪比的增加而减小,在高信噪比下收敛到一个固定常数;中断概率随着功率分配系数的改变也会产生相应的变化。  相似文献   

11.
This paper proposes a code division multiple access (CDMA) time division duplex (TDD) system for wireless multimedia services with traffic unbalance between uplink and downlink. In the proposed system, the number of uplink time slots in a TDD frame differs from that of downlink. Moreover, the difference can be reset by the network operator according to the traffic pattern. We evaluate the performance of the proposed system under multimedia environment using Markov analysis and computer simulation. The results show that the frequency utilization is maximized even when the uplink and downlink traffic volumes are unbalanced. This, in turn, reduces drastically the blocking rate of multimedia calls (connections) in the proposed system compared with that in the traditional CDMA systems where the uplink and downlink use equal bandwidth  相似文献   

12.

In this paper, the impact of varying path loss exponent (PLE) on user association probability, decoupled uplink coverage probability as well as decoupled uplink average spectral efficiency in downlink uplink decoupled (DUDe) multi-tier heterogeneous networks, is investigated. We investigate the effect of the difference in path loss exponents in both macro and small cell environments over uplink network performance. It is assumed that the mobile user connected to the macro base station experience different path loss exponent as compared to when connected to small base station. It is observed that the difference of path loss exponents in both cases has significant effect on the user association probability, decoupled uplink coverage probability as well as decoupled uplink average spectral efficiency. Moreover, in order to further support key findings and make sound comparison between coupled and DUDe performance in varying PLE environment, generalized analytical expressions for coupled association probabilities, along with coupled uplink coverage probability and coupled uplink average spectral efficiency have been derived. The analytical results evaluated in this paper are compared with the computer simulation and found in good agreement. Our analysis shows that decoupling technique performs suboptimal for cases where the environments around macro and small base stations are different with respect to each other. The work explained in this paper highlights the limitation of applying DUDe technique in realistic conditions where the PLEs of cellular tiers are not exactly equal to one another.

  相似文献   

13.
针对异构网(Heterogeneous Network,HetNet)无线回程,现有研究主要集中于提升网络吞吐量,而对回程覆盖性能研究较少.由此,本文构造了一种在小小区基站(Small cell Base Station,SBS)上结合全双工(Full-Duplex,FD)和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术的大规模多输入多输出(Multiple Input Multiple Output,MIMO)辅助多层HetNet模型.利用信干比(Signal-to-Interference Ratio,SIR)来模拟有源SBS的分布,得出不同类型接收端的干扰;然后推导了移动用户(Mobile User,MU)下行链路覆盖概率闭合表达式.仿真和数值结果表明,SBS下行链路覆盖概率会随着小小区下行链路功率共享系数的增加而减小;此外,通过对比NOMA和正交多址接入(Orthogonal Multiple Access,OMA)以及FD和半双工(Half-Duplex,HD)对下行链路覆盖性能的影响,本文提出的方案能显著提升网络性能.  相似文献   

14.
Long‐Term Evolution (LTE) is a 4G wireless broadband technology developed by the Third Generation Partnership Project. Two duplex modes, namely, frequency division duplex and time division duplex (TDD), are defined in LTE for transmission in both downlink and uplink directions simultaneously. Power saving mechanisms for LTE‐frequency division duplex were proposed in the authors' previous work. Applicability of the previously proposed mechanisms to LTE‐TDD is investigated in this paper, and the idea of “virtual time” associated with the mapping mechanism from the virtual time domain to the actual time domain for different TDD configurations is proposed. With the help of the mapping mechanism, 3 revised power saving schemes are proposed to support real‐time user equipments and nonreal‐time user equipments in LTE‐TDD. Simulation study demonstrates the effectiveness of the mapping mechanism as well as the benefit of the proposed schemes in power saving efficiency and real‐time support in comparing with the standard‐based mechanism.  相似文献   

15.
We analyze spectral efficiency of dynamic time division duplex in a fixed wireless cellular network. Conventionally, spectral efficiency has been analyzed for static and fully loaded systems. In this paper, we investigate how asymmetric and dynamic traffic affect the spectral efficiency of Time-Division-Duplex (TDD) systems. Recently, dynamic TDD (D-TDD) has gained much attention as an efficient duplex scheme for high-speed data communications, because adaptive switching ability enables the system to obtain statistical multiplexing gain by exploiting dynamic and asymmetric data traffic. However, it has been noted that a rather strong co-channel interference can be present due to adaptive switching in a cellular network that uses frequency reuse. Thus, benefits of dynamic TDD may not be justifiable unless a proper countermeasure is employed. To suppress the effect of strong co-channel interference, we employ time slot allocation (TSA) strategy along with sector antenna layouts, as proposed in our previous work Jeong and Kavehrad (IEEE and Transactions on communication, Vol. 50, no.10 pp. 1627–1636, 2002). We note that higher spectral efficiency is obtained in D-TDD systems by employing TSA strategy. We also evaluated spectral efficiency of D-TDD system employing adaptive modulation, assuming that traffic is delay tolerant. It is observed that five times higher spectral efficiency can be obtained by employing adaptive modulation. The effect of variance of ratio of offered load on uplink and downlink is also evaluated. Our computer simulation results show that spectral efficiency of D-TDD system with time slot allocation algorithm is more than that of static TDD (S-TDD) over a large range of traffic variation. In conclusion, D-TDD system can take advantage of statistical multiplexing gain of dynamic traffic by adaptively positioning the boundary to the varying traffic bandwidth in its two-way transmissions when TSA strategy is employed for suppression of strong co-channel interference.  相似文献   

16.
The air interface of the UMTS Terrestrial Radio Access (UTRA) covers both a frequency division duplex (FDD) part for the paired bands and a time division duplex (TDD) part for the unpaired bands of the UMTS spectrum. The Universal Mobile Telecommunication System (UMTS) is the 3rd-generation mobile communication system. This paper presents an interference evaluation of the UTRA TDD. Since both uplink and downlink share the same frequency in TDD, the signals of the two transmission directions can interfere with each other. This interference can occur between two mobile stations or between two base stations within one carrier or between two operators. The interference between uplink and downlink is evaluated by system simulations. Synchronization and coordination requirements of UTRA TDD are evaluated based on the results  相似文献   

17.
In this paper, we consider a fixed wireless cellular network that uses dynamic time division duplex (D-TDD). We analyze the signal-to-interference ratio (SIR) outage performance of a D-TDD fixed cellular system, and propose a scheme to improve the outage probability performance. First, outage probability is evaluated using an analytical model, when omnidirectional antennas are deployed at a base-station site and a subscriber site. Our model is verified, using Monte Carlo simulations. According to our investigation, the outage performance of the D-TDD system is severely limited by a strong interference from the cochannel cell on the downlink, while the reference cell is in the uplink cycle. To improve the outage performance during uplink receptions, we introduce two time-slot allocation methods, combined with sector antennas: max min{SIR} and max{SIR}. Max min{SIR} is an exhaustive search algorithm for assigning subscribers to a few extra uplink time slots, so as to maximize the minimum SIR expectation value over the extra uplink time-slots region. It is used as a performance benchmark in our analysis. Meanwhile, the max{SIR} is a simpler and efficient algorithm for improving the outage performance. It is established that the performance difference between the two algorithms is not noticeable. Especially, the difference is negligible, when the dynamic range of the traffic pattern between uplink and downlink is small. Also, the outage performance of a system that employs the max{SIR} algorithm combined with sectored antennas is compared to that of a system employing adaptive-array antennas. The proposed system shows promise, and offers a compromise between system complexity and network guaranteed availability.  相似文献   

18.
This paper deals with the determination of downlink (DL) and uplink (UL) channel split ratio for time division duplex (TDD) based long term evolution (LTE) networks. In a TDD system, UL and DL transmissions are carried out at different time intervals, but share the same frequency band. The TDD framing in LTE is adaptive in the sense that the DL to UL bandwidth ratio may vary with time. This paper proposes an adaptive split ratio (ASR) scheme for LTE networks to automatically adjust the bandwidth ratio of DL to UL, according to the current traffic profile, wireless interference, and transport layer parameters. This provides the maximum aggregate throughput in LTE systems. The performance analysis shows that ASR scheme outperforms static allocation in terms of higher aggregate throughput and better adaptively to network dynamics. Further, it is also observed that the ASR scheme performs well for LTE, compared to worldwide interoperability for microwave access (WiMAX) system.  相似文献   

19.
An important issue in wireless multimedia communications is to cope with the traffic asymmetry between uplink and downlink. The asymmetrical slot allocation in the code division multiple-access systems with time-division duplex mode (CDMA/TDD systems) can be a good solution for this problem. However, the level of traffic asymmetry can be significantly different from cell to cell. In this letter, we calculate the utilization of a CDMA/TDD system for the multicell model. In addition, we suggest an optimal slot allocation that maximizes the frequency utilization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号