首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical and mechanical characteristics of composite materials prepared using evaporative casting and vacuum filtration of carbon nanotubes (CNTs) dispersed in the biopolymer τ-carrageenan (IC) are reported. It is demonstrated that the contact angle of water with films is proportional to the CNT mass and volume fraction, which is used to compare the properties of buckypapers with those of evaporative cast films. Multi-walled carbon nanotube films were found to exhibit higher conductivity values compared to those observed for single-walled carbon nanotubes composites at comparable contact angle values up to true nanotube volume fraction of 0.12. Buckypapers prepared by varying the absolute amount of CNT mass while keeping the IC amount of mass constant, were found to be more robust and conducting compared to evaporative cast films. In contrast, buckypapers prepared by changing the amount of IC mass while keeping the CNT amount of mass constant were found to be more conducting, but less robust compared to evaporative cast films. It is suggested that the electrical characteristics of these gel-carbon nanotube materials are determined by the relative amounts of mass (or volume) of CNTs and polymer, while the mechanical characteristics are governed by the absolute amounts of mass (or volume).  相似文献   

2.
The influence of carbon nanotubes on the thermal ageing effect of the electrical conductivity of composite thin films is presented. The composite thin films comprise carbon nanotube/polyaniline nanofibers. When subject to thermal treatment, the presence of nanotubes retards the loss of dopants from the polyaniline and enhances the thermal stability in electrical conductivity of the composite thin films. Specifically, an increase in temperature for the conductivity degradation and a significant reduction in the rate of the conductivity degradation of the composite thin films are observed. Upon prolonged heating, the composite thin films exhibit relative large conductivity at high nanotube content, while the polyaniline thin films become insulating.  相似文献   

3.
We have demonstrated the fabrication of flexible, transparent, conducting multiwalled carbon nanotube (MWCNT)/gold nanoparticle hybrid films with improved optoelectronic properties by combining the ionic liquid-assisted sonochemical method (ILASM) for hybrid synthesis with the vacuum filtration (VF) method for thin film preparation. Au nanoparticles (NPs) with diameters of 10.3 ± 1.5 nm were uniformly distributed onto the sidewalls of MWCNTs through ILASM, and flexible, transparent, conducting films of Au/MWCNT hybrids (HBs) were reproducibly fabricated by the VF method. In particular, the sheet resistance of Au-MWCNT-HB films was more than 2-fold lower than the sheet resistance of pristine MWCNT films due to the well-interconnected three-dimensional nanotube network structure and the synergistic effect of hybridization of MWCNTs with Au-NPs.  相似文献   

4.
Multiwalled carbon nanotubes were used as filler to furan resin in the aim of producing an electrically conducting polymer composite that may be useful for electrode applications. The orientation of the nanotubes is controlled to prepare a composite with fillers unidirectionally oriented, which may result in higher electrical conductivity at one direction and at lower nanotube loading. Using the doctor blade technique, composite films were prepared and the alignment and its effect on the electrical conductivity of the composite were investigated. It was found that the doctor blade technique induced preferential alignment of the nanotubes in composite and a higher degree of alignment is achieved in composites with lower contents of nanotubes. Also, for low contents of nanotubes, the electrical conductivity of the composite with preferentially aligned nanotubes was up to a million times higher in the direction of alignment compared to that of the composite with randomly oriented nanotubes; however, at higher contents of nanotubes, this effect was diminished. The preferential alignment of the nanotubes also caused anisotropic electrical conductivity. The alignment and distribution is thought to create more junctions between nanotubes that resulted into the formation of more conducting channels in the polymer matrix parallel to blading direction.  相似文献   

5.
Flexible, transparent, and conducting composite thin films, constructed from multi-walled carbon-nanotube-supported silver–platinum alloy nanoparticles (AgPt–MWCNT) on a flexible polyethylene terephthalate (PET) substrate through the combination of a two-step polyol process for synthesizing composites of carbon nanotubes (CNTs) and metallic nanoparticles (NPs) with an ultrasonic atomization-spin coating method for preparing thin films, have been fabricated. AgPt NPs with an average size of approximately 26 nm were uniformly attached to the sidewalls of MWCNTs to form an effective and strongly mechanical conductive network. These composites were then exposed to microwave plasma irradiation, which can lower the contact resistance between the metallic NPs and CNTs and reinforce the network bridges. The resulting AgPt–MWCNT–PET thin films exhibit improved optoelectronic and mechanical properties, and they possess a sheet resistance of 154 Ω/sq with a transmittance of 80% at 550 nm. These values are competitive with those of most other CNT-based films. Most importantly, the corresponding sheet conductivity does not decrease even after 500 bending cycles. Therefore, the as-produced AgPt–MWCNT–PET films may be direct alternatives to indium tin oxide and other transparent conducting oxide films.  相似文献   

6.
Strong, conducting, transparent carbon nanotube sheets were prepared by solid-state draw from well-ordered, aligned multiwalled carbon nanotube (MWCNT) forests [Zhang et al., 2005] [1]. Study of electron field emission from such transparent MWCNT sheets shows threshold fields of less than 0.5 V/μm with current densities high enough for display applications. Step-like field emission current increase and hysteresis behavior in I-V curves has been observed. The origin of such behavior is discussed in terms of mechanical rearrangement of the nanotube network in high electric field. Studied MWCNT transparent sheet field emission cathodes have several advantages when used as multi-functional electrodes. They are high current, high stability, transparent, and flexible field emission sources and can be used in an inverted geometry, with cathode being in front of the light emitting plate. At the same time transparent CNT sheets may serve as a transparent conducting electrode for electrical connection and pixel addressing in field emission displays (FEDs). Also, these sheets can be used as an optical polarizer in FEDs.  相似文献   

7.
在不同工艺条件下制备了碳纳米管/聚甲基丙烯酸甲酯(PMMA)/聚醋酸乙烯酯(PVAc)复合膜,用透射电镜和扫描电镜详细研究了碳纳米管/PMMA/PVAc复合膜的微观结构,考察了碳纳米管在聚合物中的分散状态和导电网络的形成条件,发现通过超声分散和喷涂工艺制备的碳纳米管/PMMA/PVAc复合膜具有规则的导电网络,而且表面平整,是制备导电复合膜的最佳工艺;碳纳米管/PMMA/PVAc复合膜是很好的气敏候选材料。  相似文献   

8.
Wei L  Tezuka N  Umeyama T  Imahori H  Chen Y 《Nanoscale》2011,3(4):1845-1849
Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.  相似文献   

9.
Luca Valentini 《Polymer》2005,46(17):6715-6718
The adsorption of several types of conducting polymers on carbon nanotubes is investigated by electrical transport measurements. We report the optoelectronic properties occurring in single-walled carbon nanotubes (SWNTs) conjugated polymer, poly(3-octylthiophene), composites. Al/polymer-nanotube composite/indium-tin oxide diodes show photovoltaic behavior proposing that the main reason for this increase is the photoinduced electron transfer at the polymer/nanotube interface. Interesting results were obtained in the case of poly(o-anisidine) (POAS)-multi-walled nanotubes (MWNTs) composites where the increment of monolayers results in a significant improvement of the specific conductivity. POAS-coated MWNTs thin films demonstrated their potentiality as a new class of materials for inorganic vapors detection for environmental applications.  相似文献   

10.
Transparent and electrically conducting films were fabricated using a novel and simple method in which single‐walled carbon nanotubes (SWCNTs) adsorbed onto bacterial cellulose membranes were embedded into a transparent polymer resin. The bacterial cellulose membranes consisting of numerous nanofibrils were found to play important roles in this process. The bacterial cellulose membranes impart optical transparency to the nanocomposites due to the size of the materials during the synthesis of the nanocomposite using a transparent polymer resin. The membranes play a secondary role as a template for depositing uniformly dispersed SWCNTs. This results in not only electrically conducting pathways but also prevents interference from the transmittance of optically transparent nanocomposites. Transparent conducting films with a wide range of transmittances and surface resistances could be obtained by controlling the immersion time and SWCNT concentration in the SWCNT dispersions. A transparent conducting film with a transmittance and surface resistance of 77.1% at 550 nm and 2.8 kΩ/sq, respectively, was fabricated from a 0.01 wt %. SWCNT dispersion for an immersion time of 3 h. In addition, the transparent conducting films were quite flexible and maintained their properties even after crumpling. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
In this study, experimental and numerical studies were performed to investigate the relationship among the functionalization method, weight fraction of MWCNTs, thermal imidization cycle, and mechanical properties of various PAI/MWCNT composite films. Poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were prepared by solution mixing and film casting. The effects of chemical functionalization and weight fraction of multiwalled carbon nanotubes on thermal imidization and mechanical properties were investigated through experimental and numerical studies. The time needed to achieve sufficient thermal imidization was reduced with increasing multiwalled carbon nanotube content when compared with that of a pure poly(amide‐co‐imide) film because multiwalled carbon nanotubes have a higher thermal conductivity than pure poly(amide‐co‐imide) resin. Mechanical properties of pure poly(amide‐co‐imide) and poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were increased with increasing imidization time and were improved significantly in the case of the composite film filled with hydrogen peroxide treated multiwalled carbon nanotubes. Both the tensile strength and strain to failure of the multiwalled carbon nanotube filled poly(amide‐co‐imide) film were increased substantially because multiwalled carbon nanotube dispersion was improved and covalent bonding was formed between multiwalled carbon nanotubes and poly(amide‐co‐imide) molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Xuetong Zhang  Jin Zhang  Zhongfan Liu 《Carbon》2005,43(10):2186-2191
We have demonstrated a simple and general strategy, namely in situ electropolymerization by using an ionic surfactant as the electrolyte, for alignment of disordered CNTs within conducting polymer/carbon nanotube composite films. The single- or multi-walled CNTs were first dispersed in an aqueous solution containing SDS (sodium dodecyl sulfate), then electroactive monomer pyrrole or N-methylpyrrole was added into the above mixture, finally electrochemical reaction was proceeded at the surface of the Au electrode and correspondingly a series of conducting polymer/carbon nanotube composite films with the orientation of carbon nanotubes were obtained.  相似文献   

13.
Su Y  Du J  Pei S  Liu C  Cheng HM 《Nanoscale》2011,3(11):4571-4574
High quality patterning of single-walled carbon nanotube (SWCNT) transparent conductive films is achieved by a lift-off aluminum interlayer method, which has the advantage of resulting in contamination-free and damage-free SWCNTs. The obtained patterns preserve the electrical properties of the SWCNT films and show promising applications in flexible high frequency electronic and display devices.  相似文献   

14.
Electrodeposited single-walled carbon nanotube thin films were used to prepare carbon nanotube-polymer composites by infiltrating methyl methacrylate (MMA) followed by in situ polymerization. Once polymerized, the PMMA matrix undergoes excellent conformal filling within the nanotube network, giving rise to a semi-transparent conducting structure with lower wettability and higher mechanical properties than those of PMMA. The presented synthesis strategy could find implications toward functional nanostructures with applications in electromagnetic shielding and antistatic coatings.  相似文献   

15.
Anisotropic electrical conduction measurements have been carried out for thin films of vertically-aligned single-walled carbon nanotubes (VA-SWCNTs) grown by an alcohol catalytic CVD process. Combined with controlled synthesis and structure characterization by optical spectroscopy, the influence of the aligned structure on the electrical conduction has been identified. The out-of-plane conductivity of the films was measured to be about 0.56 S/mm, independently of the film thickness. On the other hand, the in-plane conductivity was found to be more than an order of magnitude smaller, which gives rise to highly anisotropic electrical conduction, reflecting the high degree of alignment in the VA-SWCNT films. The in-plane conductivity decreases with increasing film thickness, in contrast to the film of random SWCNT networks, which exhibit thickness-independent in-plane resistance. The thickness-dependent in-plane conductivity can be expounded by a growth model of vertically aligned SWCNT films in which a thin layer of nanotube networks form on top of films at the initial stage of the growth. Such electrical anisotropy of VA-SWCNT films can be useful in miniaturized sensing devices.  相似文献   

16.
We report a simple way to produce fully densified aligned carbon nanotube (ACNT) films. The simultaneous growth of nanotubes and densification of the ACNT films by carbon infiltration in the interstitial spaces between nanotubes are accomplished in a single step by the combination of the chemical vapor deposition and chemical vapor infiltration processes. Scanning electron microscope analysis and microbalance measurements showed that after infiltration, the diameters of nanotubes and bulk density of the ACNT films are increased by an order of magnitude (and hence the porosity of the ACNT films is decreased). Transmission electron microscope and Raman scattering analysis showed that after densification, the nanotubes are conformally coated by partially graphitized pyrolytic carbon. The compressive modulus of the densified ACNT films could be increased by three orders of magnitude compared to the pristine ACNT films. Electrical properties are also measured for the densified films showing marked differences with the ACNT films. The property enhanced densified ACNT films constitute a new form of carbon-carbon nanocomposites and could find applications as multifunctional nanocomposites.  相似文献   

17.
The use of multi‐walled carbon nanotubes (MWCNT) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA), and polystyrene (PS) has been studied. MWCNT were synthesized by chemical vapor deposition (CVD) technique using ferrocene‐toluene mixture. As‐prepared nanotubes were ultrasonically dispersed in toluene and subsequently dispersed in PMMA and PS. Thin polymer composite films were fabricated by solvent casting. The effect of nanotube content on the electrical and mechanical properties of the nanocomposites was investigated. An improvement in electrical conductivity from insulating to conducting with increasing MWCNT content was observed. The carbon nanotube network showed a classical percolating network behavior with a low percolation threshold. Electromagnetic interference (EMI) shielding effectiveness value of about 18 dB was obtained in the frequency range 8.0–12 GHz (X‐band), for a 10 vol% CNT loading. An improved composite fabrication process using casting followed by compression molding and use of functionalized MWCNT resulted in increased composites strength. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
As transparent conducting oxides (TCOs) have been widely used as a common component of many optoelectronic applications, ensuring high conductivity and transparency TCOs has become a pivotal concern. In the present study, we report developing the combustion-activated pyrolysis route of horizontal ultrasonic spray pyrolysis deposition (HUSPD) as a novel strategy to form highly transparent conducting fluorine-doped tin oxide (FTO) films. Compared to the basic route, the combustion-activated FTO films showed an attractive transparent conducting performance (figure of merit of 5.34?×?10?2?1) with a highly improved optical transparency (90.1%) due to the formation of a smooth and dense film structure to reduce light scattering on the surface, and a decrease of oxygen vacancies to broaden the optical bandgap, all of which yielded an excellent performance as compared to the previously reported studies on the FTO films. Moreover, when the combustion-activated FTO films were used as TCOs of electrochromic devices and dye-sensitized solar cells, they acquired multifunctional effects of (a) an efficient electron transfer by (200) preferred orientations of the FTO; (b) a relaxed light scattering on the interface due to smooth and dense surface morphology of the FTO films; and (c) a broad optical bandgap by decreased oxygen vacancies, resulting in an impressive improvement of both electrochromic and photovoltaic performances. Taken together, our results demonstrate that combustion-activated FTO films are an attractive technique for forming high-performance TCOs that can further be used in multifunctional optoelectronic devices.  相似文献   

19.
Chuxin Wu  Lunhui Guan 《Carbon》2011,(10):3267-3273
A simple process was developed for increasing the semiconducting component of single-walled carbon nanotubes (SWCNTs) with narrowed diameter distribution through directly eliminating metallic SWCNTs and semiconducting SWCNTs (s-SWCNTs) with smaller diameters in transparent conducting films of SWCNTs. The process is based on the oxidation with diazonium reagents and air. The transparent films of s-SWCNTs obtained had high-purity and retained the original structure. The possible mechanism of the process is discussed.  相似文献   

20.
Shu Jun Wang 《Carbon》2010,48(6):1815-18241
Graphene-based transparent conducting films were prepared using the following method. A chemically-reduced graphene dispersion was synthesized and graphene films were prepared from it by transfer printing, followed by thermal treatment. The resulting graphene films possessed an excellent electrical conductivity with a high transparency. A sheet resistance lower than ∼2 KΩ/sq and a transparency well over 80% were achieved at a typical wavelength of 550 nm. These properties are considered quite sufficient for many applications, such as transparent conductor films for touch panels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号