首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
We report the single-step synthesis of Ge nanowires encapsulated within multi-walled carbon nanotubes (MWCNTs) from a phenyltrimethylgermane (C6H5Ge(CH3)3) precursor, using a simple chemical vapor deposition (CVD) method. The MWCNT/germanium nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements. TEM analysis reveals that the nanowires consist of well crystallized Ge cores which are completely encapsulated by the sheath-like MWCNTs, the latter corresponding to a layer thickness of 5-10 nm. SEM images, corresponding to various stages of nanowire growth, indicate that MWCNT growth occurs at Ge nanoparticles and that the growing MWCNTs carry Ge as nanowires away from the nanoparticles. By optimizing the CVD parameters, nanowires can be produced with uniform length and diameter in the range 6-10 μm and 200-300 nm, respectively.  相似文献   

3.
An amphiphilic diblock copolymer (PEtOz-PCL) based on hydrophilic poly(2-ethyl-2-oxazoline) (PEtOz) and hydrophobic poly(ε-caprolactone) (PCL) was adsorbed in aqueous phase on the surface of single-wall carbon nanotube to produce PEtOz-PCL-encapsulated SWCNTs (PEtOz-PCL/SWCNT) with the diameter about 30 nm. The Raman spectroscopy analysis indicated that the nanotubes were physically encapsulated by the block copolymer without chemical denaturation of the nanotube. PEtOz-PCL/SWCNTs exhibited pH-responsive reversible complexation with poly(acrylic acid) or poly(methacrylic acid) in aqueous phase due to the pH-dependent hydrogen bonding between the PEtOz outer shell of PEtOz-PCL/SWCNTs with carboxyl groups. In addition, by using PEtOz as a template for the formation of metal nanoparticles, Au and Pd nanoparticles were successfully hybridized with PEtOz-PCL/SWCNTs.  相似文献   

4.
An α-helical region of protein molecule was considered in a model of nanotube. The molecule is in conditions of quantum excitations. Such model corresponds to a one-dimensional molecular nanocrystal with three molecules in an elementary cell at the presence of excitation. For the analysis of different types of conformational response of the α-helical area of the protein molecule on excitation, the nonlinear response of this area to the intramolecular quantum excitation caused by hydrolysis of adenosine triphosphate (ATP) is taken into account. It has been established that in the simplest case, three types of excitation are realized. As estimates show, each of them ‘serves’ different kinds of protein. The symmetrical type of excitation, most likely, is realized in the reduction of traversal-striped skeletal muscles. It has the highest excitation energy. This well protects from casual actions. Antisymmetric excitations have intermediate energy (between symmetrical and asymmetrical). They, most likely, are realized in membranous and nucleic proteins. It is shown that the conformational response of the α-helical region of the protein is (in angstroms) a quantity of order N c /5, where N c is the number of spiral turns. For the number of turns typical in this case: N c  ~ 10, displacement compounds are a quantity of order 2 Å. It qualitatively corresponds to observable values. Asymmetrical excitations have the lowest energy. Therefore, most likely, they are realized in enzymatic proteins. It was shown that at this type of excitation, the bending of the α-helix is formally directed to the opposite side with respect to the antisymmetric excitations. Also, it has a greater value than the antisymmetric case for N c  ≤ 14 and smaller for N c  > 14.

PACS

92C05

MCS

36.20.Ey  相似文献   

5.
Single-walled carbon nanotubes were chemically functionalized by virtue of the interactions between the nanotube-bound carboxylic moieties and octadecylamine ligands. The electronic conductivity properties of the resulting nanotubes were probed voltammetrically. Two approaches were employed. The first entailed the fabrication of a nanotube monolayer at the air|water interface and the conductivity was measured in situ with a vertically aligned interdigitated arrays (IDAs) electrode. The overall current profiles are analogous to those of a Coulomb blockade and the conducting current pathways are found to be one-dimensional within the two-dimensional arrays of nanotubes. The second technique was taking advantage of the dispersibility of the nanotubes in a solution where conventional electrochemical methods were used. From these measurements, the nanotube bandgap energy could also be estimated, which was quite comparable to that determined by spectroscopic measurements.  相似文献   

6.
7.
We perform theoretical studies on the phonon thermal transport in helically coiled carbon nanotubes (HCCNTs). The Grüneisen parameter, as a function of the phonon wave vector and phonon branch, is numerically evaluated for each vibrational mode, so that the three-phonon Umklapp scattering rates can be calculated exactly by taking into account all allowed phonon relaxation channels. We considered wide temperature range and heat conductor lengths from nano- to macro-scale. We examine the crossover from ballistic to diffusive transport regime and impact of HCCNT geometrical parameters on their heat conduction. Thermal conductivity in HCCNTs is found to be slightly lower than that in single walled carbon nanotubes (SWCNTs). This is interpreted by the competition among three factors. Firstly, threefold reduction of the Grüneisen parameter for the acoustic branches. Secondly, lower phonon group velocities. Finally, availability of purely acoustic scattering channels. Nevertheless, HCCNTs are predicted to be more suitable (than SWCNTs) for thermal management applications due to their spring-like shape. HCCNTs are extremely elastic, natural NanoVelcro material.  相似文献   

8.
Yang Wang  Baohua Yang 《Carbon》2008,46(2):276-284
Theoretical studies are presented on carbon nanowires (CNWs) made of linear carbon chains encapsulated inside armchair carbon nanotubes with various tube diameters. The structural and electronic properties as well as bonding features were investigated systematically by using ab initio self-consistent-field crystal orbital method based on density functional theory. The interaction between the tube and the chain becomes more obvious as the diameter of the CNW decreases and even weaker chemical bonds are formed between the tube and the chain in the smallest CNWs. The comparison of the elastic moduli between CNWs and CNTs supports that the mechanically unstable carbon chain is indeed protected by the CNT shell upon the encapsulation. All the CNWs we calculated are metals with zero band gaps. The encapsulation of the carbon chain may modulate the electronic properties for the CNWs depending on the tube size and the filling density of carbon atoms.  相似文献   

9.
A novel method, using molten salts, is described for the removal of encapsulated nickel catalyst particles from multi-walled carbon nanotubes. The multi-walled carbon nanotubes, synthesised by the decomposition of methane and hydrogen over a NiO/SiO2 aerogel catalyst, were treated in a LiCl-KCl eutectic molten salt and subsequently by hydrochloric acid to remove the nickel catalyst particles. The influence of the molten salt treatment on the microstructure of the carbon nanotubes was investigated by XRD, SEM and TEM analyses. The molten salt treatment promoted uncapping of the carbon capsules and the formation of strip-shaped carbon fragments. It was found that the hydrochloric acid treatment could then remove the nickel particles from the broken carbon capsules which was not possible prior to the molten salt treatment. The stability of carbon nanotubes in the molten salt is closely related to their ordered structure.  相似文献   

10.
A reaction of single-wall carbon nanotubes with an organic hydrazine proceeds in an aqueous surfactant solution. Raman spectrum of the product shows the typical disorder band, indicating the occurrence of sidewall functionalization of nanotubes. Elemental analyses of the products suggest that C-N bonds are formed on the nanotube surface. The functionalized nanotubes are soluble in organic solvents up to 100 mg/L. The attached groups can be removed by heating.  相似文献   

11.
We present a study on the adsorption properties of ruthenium(II) dye (Ru(II) dye) on multi-walled carbon nanotubes (MWNTs). To fabricate dye sensitized solar cells (DSCs) using dye coated MWNTs, we have developed a method to form covalently linked adducts of MWNTs and Ru(II) dye. MWNTs were functionalized by sonication in hydrogen peroxide solution. Ru(II) dye can be attached to the functionalized MWNTs by a synthetic route using Thionyl chloride (SOCl2) followed by ethylenediamine. The adsorption characteristics were affected by parameters such as chemical oxidation of MWNTs, sonication process, processing temperature and time. The amount of adsorbed Ru(II) dye was effectively affected by treatment temperature of SOCl2 than any other parameters.  相似文献   

12.
Evaluating the characteristics of multiwall carbon nanotubes   总被引:2,自引:0,他引:2  
During the past 20 years, multiwall carbon nanotubes (MWCNTs) have become an important industrial material. Hundreds of tons are produced each year. This review is a survey of the scientific literature, motivated by industrial requirements and guidelines for environment, health and safety compliance. Sampling, size, area, density, color, crystallinity, as well as purity compared to properties of non-MWCNT carbon and catalyst metals, are presented. No single measurement tool provides a complete characterization; therefore, we summarize methods that include scanning electron microscopy, transmission electron microscopy (TEM), fast Fourier transform of high-resolution TEM, Raman spectroscopy, reflectance and thermogravimetric analysis. Fourier transform infrared spectroscopy reveals information with regard to functional groups interacting the tube surface. Brunauer–Emmett–Teller (BET) analysis is reviewed as the basis for evaluating specific surface area. We extend the review by presenting taxonomy of defects present in MWCNTs. Finally, we provide an appendix from documentary standards that are pertinent and reasonable for bulk measurements.  相似文献   

13.
14.
Adsorption equilibrium of organic vapors on single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 × 10−4 to 0.95 and at isothermal conditions of 25, 37 and 50 °C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons.  相似文献   

15.
Semiconducting nanoparticle-functionalized carbon nanotubes are very promising for many electronic systems and devices. In this paper, the synthesis of carbon nanotube/semiconducting nanoparticle hybrids was firstly demonstrated by a facile solution method and the effect of nanoparticle functionalization on electronic/thermal transport was investigated. Both experimental tests and theoretical analysis indicated that the thermal conductivity of nanoparticle/carbon nanotube network at room temperature was reduced by ∼37% in comparison with non-functionalized carbon nanotube networks, and this could be ascribed to the nanoparticle decoration-induced phonon scattering. In addition, the thermoelectric power factor was increased by 24-fold while the figure of merit was enhanced by 30-fold. The theoretical analysis suggested these significant improvements should originate from the carrier scattering at the carbon nanotube-nanoparticle interfaces and the decoration-augmented mismatch of the Fermi level and the mean transport energy level.  相似文献   

16.
Nonequilibrium molecular dynamics is applied to investigate thermal transport across two CNTs connected longitudinally by molecular linkers, which is a basic building-block for CNT network structures. We show the effect of different numbers, monomer types, and lengths of molecular linkers on the interfacial thermal conductance between CNTs and molecular linkers. We also analyze the density of vibrational normal modes to further understand the interfacial thermal conductance between different molecular linkers and CNTs. For most of the molecular linker type we simulated, the interfacial thermal conductance decreases with the increasing chain length. We find that aromatic-backbone structures are better than aliphatic-backbone structures to obtain higher interfacial thermal conductance with CNTs. Incorporating double bonds, oxygen atoms and amide groups into polymer chains shifts or redistributes of the density of vibrational normal modes, which in turn tunes the interfacial thermal conductance of molecular linker with CNTs. These results provide guidance for choosing molecular linkers to build up large-scale CNT-based network structures with tunable thermal properties.  相似文献   

17.
P. Liu  H.J. Gao 《Carbon》2008,46(4):649-655
An energetic analysis was performed to study the interactions of C60 molecules encapsulated in carbon nanotubes. Both direct interaction between C60 molecules through van der Waals forces and indirect interaction between encapsulated C60 molecules through the elastic deformation of their host carbon nanotubes were considered. For C60s encapsulated in a (9, 9) nanotube, the indirect interaction dominates and a relatively large energy barrier exists for the formation of a uniform, stable, one-dimensional (1-D) C60 array. For a (10, 10) nanotube, the indirect interaction leads to a small energy barrier to form a 1-D C60 array, while for a (11, 11) nanotube the influence of the indirect interaction is negligible. Molecular dynamics simulations were performed to confirm the present energetic analysis, suggesting that the indirect interaction between encapsulated molecules/particles through the elastic deformation of their host nanotubes may affect the stability of nanotube-based structures.  相似文献   

18.
Qingfeng Liu 《Carbon》2008,46(11):1417-1423
A simple method has been developed for direct synthesis of magnetic multi-walled carbon nanotubes (MWCNTs) homogeneously decorated with size-controllable Fe nanoparticles (Fe-NPs) encapsulated by graphitic layers on the MWCNT surface by pyrolysis of ferrocene. These composites have similar C/Fe atomic ratio of ∼10 and exhibit sufficiently high saturation magnetization for magnetic separation in a liquid phase. Moreover, with 0, ∼1, ∼2 wt% sulfur as growth promoter, the size of Fe-NPs can be controlled with an average diameter of ∼5, ∼22 and ∼42 nm, respectively. When compared to time-consuming wet-chemical methods, the simplicity of this method should allow easy large-scale production of these magnetically functionalized MWCNTs, which can be used as catalyst supports with high stability for effective magnetic separation in liquid-phase reactions, especially under acid/basic conditions.  相似文献   

19.
Controlled growth and uniform patterning of graphene/carbon shells encapsulated gold nanoparticles (GNPs) on silicon wafer or on high curvature carbon nanotubes (CNTs) is reported here. This was achieved by utilizing patterned gold nanoparticles with controlled sizes (∼30–600 nm) via gold film dewetting process. Surface-oxidized and patterned nanoparticles were used as sacrificial catalysts for the chemical vapor deposition (CVD) growth of graphene/carbon shells. The shell morphological evolution and thickness as well as surface migration of nanoparticles during the CVD process were studied as a function of the gold nanoparticles size. Reduced surface migration and coalescence was observed for gold nanoparticles after the CVD growth and this was attributed to the initial formation of graphene/carbon shells as well as stable dispersion of the dewetted gold nanoparticles. It is proposed that graphene/carbon shell growth was controlled by Ostwald’s ripening, surface gold oxide, and reducing CVD growth environment. Furthermore, complex heterostructures based on CNTs coated with GNPs were fabricated by dewetting Au films on CNTs and followed by surface oxidation and CVD growth steps. CNTs successfully survived multiple processing steps and selective growth of graphene shells around Au nanoparticles was achieved and studied using microscopic and spectroscopic methods.  相似文献   

20.
In this paper we report the characterization of linear carbon chains encapsulated in multiwalled carbon nanotubes by using Raman spectroscopy and transmission electron microscopy. The chains are characterized by strong vibrational peaks around 1850 cm−1 and both the frequency and intensity of these peaks were found to be dependent on laser excitation energy. Furthermore, resonance Raman spectroscopy was used for constructing the resonance window of the linear carbon chains. The Raman spectroscopy data showed that long chains have lower highest occupied molecular orbital–lowest unoccupied molecular orbital energy gaps and weaker carbon–carbon bonds. Besides the spectroscopy evidence for the linear carbon chain, we used scanning transmission electron microscopy/electron energy loss spectroscopy analysis of the nanotube cross section to unambiguously show the existence of a 1D structure present within the innermost carbon nanotube with an unprecedented clarity compared to previous reports on this kind of system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号