首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对壳聚糖的羧甲基化条件进行了优化。通过单因素及正交试验 ,考察了氯乙酸用量、碱化时间、反应温度对产品羧甲基取代度、外观等理化指标的影响 ,得出羧甲基化的最佳条件为 :碱化时间 2 .5h ,羧甲基化反应时间 4h ,反应温度 40℃ ,4M氯乙酸用量 70ml,制备的羧甲基壳聚糖呈白色粉末 ,羧甲基取代度达 0 .898,水溶性较壳聚糖有较大改善  相似文献   

2.
王娟  刘忠 《上海造纸》2006,37(3):40-45
该文主要研究用壳聚糖和一氯乙酸制备羧甲基壳聚糖,详细考察了碱的用量、碱化时间、醚化剂的用量、醚化温度等条件对羧甲基化反应及羧甲基壳聚糖性质的影响;并且通过应用实验表明当其加入量为0.10%时,羧甲基壳聚糖就显示出良好的增强效果,是一种很好的纸张增强剂.  相似文献   

3.
采用相转移催化法制备了羧甲基壳聚糖,考察了催化剂种类、催化剂使用量、反应温度、反应时间和溶剂中水醇比对羧甲基壳聚糖取代度(DS)和溶解性的影响。得到最佳反应条件为:以6% 的苄基三乙基氯化铵(TEBA)作催化剂,反应温度55℃,反应时间4h,溶剂中水醇比1:4(V/V),羧甲基壳聚糖的取代度(DS)和溶解率分别达到1.147 和98.87%。并采用傅立叶红外光谱法及X 光电子能谱分析法对产物结构进行了表征,结果表明壳聚糖羧甲基化反应主要是发生在C6 位上的- OH 基团上。  相似文献   

4.
O-羧甲基壳聚糖(OCC)是壳聚糖的一种重要的衍生物,具有良好的水溶性、胶凝性和生物相容性。采用氯乙酸法制备OCC,研究了氯乙酸和氢氧化钾(KOH)的用量以及反应温度、反应时间对OCC取代度的影响,并采用红外光谱分析了羧甲基的取代位置。结果表明,当壳聚糖:氯乙酸:KOH的质量比为2∶2.5∶2.7时,在50℃下分批加入氯乙酸,搅拌反应4 h,得到的OCC的取代度较高为0.78,而且红外光谱分析表明所制备的羧甲基壳聚糖即为O-羧甲基壳聚糖。  相似文献   

5.
壳聚糖和氯乙酸反应,在低碱浓的条件下合成了水溶性较好的总取代度高、N位取代度低的N,O-羧甲基壳聚糖,并采用单因素实验优化了制备条件,结果表明:当反应温度为90℃,壳聚糖与氯乙酸质量比为1:4时,制备的N,O-羧甲基壳聚糖的取代度为1.567。用红外光谱(FTIR)和热重分析(TGA)对N,O-羧甲基壳聚糖进行了结构表征,发现N,O-羧甲基壳聚糖的N位和O位均引入了羧甲基,但改性后N,O-羧甲基壳聚糖的热稳定性比壳聚糖差,热分解温度比壳聚糖低。  相似文献   

6.
以破壁提油灵芝孢子粉(SDGLS)为原料,以氢氧化钠为催化剂,氯乙酸为醚化剂,对破壁提油灵芝孢子粉的羧甲基化进行了研究。结果表明,制备羧甲基破壁提油灵芝孢子粉的较佳工艺条件为:SDGLS 1.00g,80%的乙醇20mL,氢氧化钠用量1.20g,氯乙酸用量1.18g,碱化时间2h,醚化温度45℃、醚化时间20h。此条件下,羧甲基破壁提油灵芝孢子粉的取代度(DS)达0.78,溶解率高达91%。  相似文献   

7.
以苹果渣多糖为原料,对其进行羧甲基化修饰。以羧甲基取代度为指标,通过单因素和正交试验对碱化温度、氯乙酸添加量、醚化温度、醚化时间等因素进行优化。结果表明,制备羧甲基化苹果渣多糖的最佳工艺为:碱化温度50℃,氯乙酸添加量1.00 g,醚化温度65℃,醚化时间2.5 h,此条件下,羧甲基化苹果渣多糖取代度为0.446。扫描电镜结果显示,修饰后多糖表面凹凸不平附着大量碎片。红外光谱结果显示,修饰后出现了COO—的振动吸收峰,表明多糖成功被羧甲基化修饰。通过修饰,多糖的溶解度得到显著提高。  相似文献   

8.
为优化青钱柳多糖的羧甲基化修饰工艺条件,采用响应曲面Box-Behnken中心组合设计3因素3水平试验,以青钱柳多糖羧甲基化取代度为指标,通过分析各因素交互作用及显著性,探讨氯乙酸浓度、反应温度、时间对多糖羧甲基化修饰的影响。结果表明,青钱柳多糖的羧甲基修饰最优工艺条件为:氯乙酸浓度3 mol/L、反应温度60℃、反应时间4 h,该条件下测得羧甲基化青钱柳多糖取代度为0.76。羧甲基青钱柳多糖CM-CP-1和CM-CP-2在1 mg/mL浓度下对体外超氧自由基的清除率分别为57.52%和53.01%,清除作用随多糖羧甲基化取代度升高而降低,略低于青钱柳原多糖。  相似文献   

9.
以甘薯淀粉为原料,用乙醇作溶剂,用环氧氯丙烷作交联剂,氯乙酸作羧甲基化试剂,合成交联-羧甲基复合变性淀粉.研究了氢氧化钠、氧乙酸、反应温度、反应时间、乙醇用量等因素对反应的影响.以取代度为目标,用正交实验法确定了交联-羧甲基复合变性甘薯淀粉合成工艺的最佳条件为:反应温度50℃,反应时间4h,配料比m(淀粉):m(氯乙酸):m(氢氧化钠):1:0.48:0.52,在该优化条件下,交联甘薯羧甲基淀粉取代度(DS)达0.75.  相似文献   

10.
高取代度羧甲基小麦淀粉制备工艺的优化及表征   总被引:1,自引:0,他引:1       下载免费PDF全文
摘 要:以小麦淀粉为原料,以氯乙酸作为醚化剂,采用两次加碱法制备了高取代度的羧甲基小麦淀粉。以4.05g淀粉为基准,采用正交实验对反应条件进行了优化,得到的最佳工艺条件为:水用量6mL,无水乙醇用量60mL,氯乙酸与淀粉摩尔比1.4,氢氧化钠与氯乙酸摩尔比1.8,碱化用氢氧化钠百分比70%,碱化温度35~40℃,碱化时间0.5~1h,醚化温度50~55℃,醚化时间2~3h,在此条件下制得了取代度高达1.21的羧甲基小麦淀粉。  相似文献   

11.
以马铃薯淀粉为原料,通过与氯乙酸的反应和采用"两步碱化法"合成了羧甲基淀粉。探讨了在不同的反应条件下,羧甲基淀粉取代度和黏度之间的关系。结果表明,随着碱化时间、碱化温度、醚化时间、醚化温度、氢氧化钠以及氯乙酸用量的改变,羧甲基淀粉取代度的高低和其黏度的变化不呈单调关系。结论:由于氢氧化钠的双重作用,在一定范围内,取代度增大而粘度减小。  相似文献   

12.
羧甲基葡甘露聚糖是魔芋葡甘露聚糖的重要产物。文中以反应时间、理论取代度、反应温度、NaOH与氯乙酸摩尔比、液料比、乙醇的体积分数作为葡甘露聚糖羧甲基化的影响因素,根据Box-Benhnken的中心组合实验设计原理,在confounded fractional factorial designs的基础上,采用三因素三水平的响应面分析法对羧甲基化过程进行优化。结果表明:羧甲基化的最佳条件为,理论取代度2.8、NaOH与氯乙酸摩尔比值为2.5、乙醇的体积分数70%时,可得到取代度0.772 9羧甲基葡甘露聚糖。  相似文献   

13.
以黄姜淀粉为原料,乙醇为溶剂,用溶剂法制备羧甲基淀粉.应用正交设计法研究了影响淀粉羧甲基化反应的各种因素,通过检测取代度确定了制取羧甲基淀粉的最佳反应条件:淀粉、氢氧化钠、氯乙酸的比值为1:2.1:1.4,乙醇浓度为0.85,醚化时间为2.5h,醚化温度为44℃.通过实验获得取代度为0.4311的羧甲基淀粉产品.  相似文献   

14.
研究菊粉的羧甲基改性工艺条件,以碱化时间、醚化温度、醚化时间、碱用量以及氯乙酸用量为影响因素,以羧甲基的取代度为考察指标,运用Plackett-Burman设计筛选出3个对菊粉羧甲基取代度影响显著因素,即碱化时间、醚化温度和氯乙酸用量,采用响应面分析试验优化菊粉的羧甲基改性工艺。菊粉的羧甲基改性最优工艺条件为菊粉用量6.8g、碱化时间30min、醚化温度81℃、氯乙酸用量2.96g,此时菊粉的羧甲基取代度为0.66±0.000167。  相似文献   

15.
羧甲基壳聚糖的制备研究   总被引:7,自引:0,他引:7  
探索壳聚糖水溶性衍生物——羧甲基壳聚糖的制备方法。将壳聚糖在乙醇中浸泡数小时,然后用50%氢氧化钠碱化,制得碱化壳聚糖。把氯乙酸加入碱化壳聚糖中,在45~50℃搅拌反应4小时,粗产品用乙醇提纯,得到白色片状羧甲基壳聚糖,产率97.1%。  相似文献   

16.
马铃薯羧甲基淀粉制备工艺的研究   总被引:5,自引:4,他引:5  
研究了以马铃薯淀粉为原料,用乙醇溶剂法制备羧甲基淀粉(CMS)。探讨了碱化温度、醚化温度、碱化时间、醚化时间、氢氧化钠用量、氯乙酸用量及反应体系中的水分含量对马铃薯羧甲基淀粉取代度(DS)的影响,通过正交试验得出制备马铃薯羧甲基淀粉的最佳工艺条件。  相似文献   

17.
以梭子蟹蟹壳为原料,经预处理、浸酸脱钙质、碱煮脱蛋白和浓碱脱乙酰化制备壳聚糖膜;再在碱性条件下使壳聚糖膜和氯乙酸发生取代反应,制备羧甲基化壳聚糖膜.采用电位滴定法测试羧甲基化壳聚糖膜的取代度.测试壳聚糖膜和羧甲基化壳聚糖膜的溶胀性、吸水性、润湿性和抗菌性.结果表明:制备的羧甲基化壳聚糖膜的取代度为1.86,其溶胀性和吸...  相似文献   

18.
酵母葡聚糖的羧甲基化研究   总被引:9,自引:1,他引:8  
在NaOH水溶液中 ,以ClCH2 COOH为羧甲基化试剂 ,取代度 (DS)为目标 ,对酵母碱不溶性葡聚糖进行羧甲基化 ,确定制备高取代度羧甲基葡聚糖 (CMG)的条件。结果表明 ,葡聚糖羧甲基化时间 4h ,羧甲基化温度 5 0℃ ,ClCH2 COOH用量 1 5mL ,制备的CMG取代度达 0 .92 5 ,完全水溶。  相似文献   

19.
本研究以毛竹为原料,首先通过碱性过氧化氢法制备半纤维素,再采用超声辅助法对半纤维素进行羧甲基化改性。结果表明,液固比20∶1时半纤维素得率最高,达18.00%。半纤维素羧甲基化改性的最佳工艺条件为:NaOH物质的量浓度1.2 mol/L,氯乙酸物质的量浓度0.6 mol/L,碱化时间及温度分别为40 min、30 ℃,醚化时间及温度分别为150 min、70 ℃。随着羧甲基半纤维素取代度的提高,改性前后的半纤维素最大降解温度由257 ℃提升至300 ℃,说明羧甲基化改性有助于提升半纤维素的热稳定性;Zeta 电位的绝对值由9.98 mV提升至38.00 mV(取代度=0.59),且改性后半纤维素的分散性有了明显提升。  相似文献   

20.
为了改变壳聚糖的溶解性,提供性能更稳定安全的果蔬涂膜保鲜剂,本实验采用氯乙酸途径制备羧甲基壳聚糖,并采用等电点沉降法进行分离,大幅度减少传统方法中有机溶剂用量,制备成本也有所降低.通过单因素和正交实验对羧甲基化反应的条件进行了优化,确定其最佳工艺条件为:壳聚糖用量为2g时,氢氧化钠用量为9g,氯乙酸用量为10g,反应时间5h,反应温度60℃.将该工艺条件下制备的羧甲基壳聚糖配制成不同浓度的保鲜剂,对黄瓜进行涂膜处理,结果表明浓度在1%~ 2%的羧甲基壳聚糖保鲜剂对黄瓜有良好的保鲜效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号