首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper presents a robust control approach to solve the stability and stabilization problems for networked control systems (NCSs) with short time‐varying delays. A new discrete‐time linear uncertain system model is proposed to describe the NCS, and the uncertainty of the network‐induced delay is transformed into the uncertainty of the system matrix. Based on the obtained uncertain system model, a sufficient BIBO stability condition for the closed‐loop NCS is derived by applying the small gain theorem. The obtained stability condition establishes a quantitative relation between the BIBO stability of the closed‐loop NCS and two delay parameters, namely, the delay upper bound and the delay variation range bound. Moreover, design procedures for the state feedback stabilizing controllers are also presented. An illustrative example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We show that the Lyapunov function used in backstepping feedback designs for uncertain nonlinear systems leads to unnecessarily ‘hard’ control laws having undesirable high-gain properties. We present a new Lyapunov function and use it to design ‘softer’ control laws which exhibit the high-gain properties to a much lesser extent. We show that the ‘soft’ designs eliminate the chattering exhibited by the ‘hard’ designs and achieve the same or better performance with less control effort.  相似文献   

3.
    
In this paper, the problem of robust adaptive fault‐tolerant tracking control with time‐varying performance bounds is investigated for a class of linear systems subject to parameter uncertainties, external disturbances and actuator failures. In order to ensure the norm of the tracking error less than the user‐defined time‐varying performance bounds, we propose a new control strategy which is predicated on the generalized restricted potential function. Compared with the existing result, a novel method which provides two design freedoms is developed to reduce the tracking error. According to the online estimation information provided by adaptive mechanism, a fault‐tolerant tracking control method guaranteeing time‐varying performance bounds is developed for robust tracking of reference model. It is shown that the closed‐loop signals are bounded and the tracking error within an a priori given, time‐varying performance bounds. A simulation result is provided to demonstrate the efficacy of the proposed fault‐tolerant tracking control method.  相似文献   

4.
不确定组合大系统的自适应分散镇定控制   总被引:2,自引:0,他引:2       下载免费PDF全文
考虑具有非线性关联作用的不确定时变线性组合大系统的自适应分散镇定问题.针对系统不确定界完全未知的情形,首先从理论上证明了可设计自适应鲁棒分散控制器确保受控系统渐近稳定;进而从工程实际应用的角度,给出了确保受控系统实用稳定的自适应鲁棒分散控制器的设计方案.仿真说明该设计方案是有效的.  相似文献   

5.
    
This paper addresses the passivity‐based control problem for a class of time‐varying delay systems subject to nonlinear actuator faults and randomly occurring uncertainties via fault‐tolerant controller. More precisely, the uncertainties are described in terms of stochastic variables, which satisfies Bernoulli distribution, and the existence of actuator faults are assumed not only linear but also nonlinear, which is a more general one. The main objective of this paper is to design a state feedback‐reliable controller such that the resulting closed‐loop time‐delay system is stochastically stable under a prescribed mixed and passivity performance level γ>0 in the presence of all admissible uncertainties and actuator faults. Based on Lyapunov stability method and some integral inequality techniques, a new set of sufficient conditions is obtained in terms of linear matrix inequality (LMI) constraints to ensure the asymptotic stability of the considered system. Moreover, the control design parameters can be computed by solving a set of LMI constraints. Finally, two examples including a quarter‐car model are provided to show the efficiency and usefulness of the proposed control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
    
An active fault‐tolerant control scheme for discrete‐time systems is proposed to solve a difficult problem of fault‐tolerant controller design in the presence of partial loss of actuator effectiveness faults and structural parameter uncertainties assumed to be matched, using adaptive control techniques to help a faster and more accurate compensation of failure and uncertainty. An automated fault estimation scheme is developed together with an adaptive model parameter identification to obtain system parameter estimates. With these estimates fed back to the system, a model reference adaptive controller is constructed to achieve a desired tracking performance. Since parameters are obtained and updated online, the control system has an automatic failure compensation capability so as to recognize or reconfigure the control law in real time in response to failure indications. The stability and convergence follow from discrete‐time Lyapunov arguments. Simulation results from the linearized lateral dynamics model of the Boeing 747 airplane are presented to show the efficiency of proposed methods.  相似文献   

7.
不匹配不确定性系统的近似变结构输出跟踪控制   总被引:4,自引:0,他引:4  
针对一类具有不匹配不确定性的非线性系统,提出一种结合变结构控制方法及自适应控制方法输出跟踪控制器。首先提出一种保证不确定性系统跟踪误差指数稳定的近似变结构控制器;进而得到一种具有不确定性范数上界估计能力的自适应近似变结构控制器,并证明了所提出的自适应近似变结构控制器使跟踪误差在时间趋于无穷时收敛于零。  相似文献   

8.
    
The attitude tracking of a rigid spacecraft is approached in the presence of uncertain inertias, unknown disturbances, and sudden actuator faults. First, a novel integral terminal sliding mode (ITSM) is designed such that the sliding motion realizes the action of a quaternion‐based nonlinear proportional‐derivative controller. More precisely, on the ITSM, the attitude dynamics behave equivalently to an uncertainty‐free system, and finite‐time convergence of the tracking error is achieved almost globally. A basic ITSM controller is then designed to ensure the ITSM from onset when an upper bound on the system uncertainties is known. Further, to remove this requirement, adaptive techniques are employed to compensate for the uncertainties, and the resultant adaptive ITSM controller stabilizes the system states to a small neighborhood around the sliding surface in finite time. The proposed schemes avoid the singularity intrinsic to terminal sliding mode‐based controllers and the unwinding phenomenon associated with some quaternion‐based controllers. Numerical examples demonstrate the advantageous features of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
    
This article addresses the problem of designing the robust tracking control for a class of uncertain electrically driven robots with time delays. The unknown time-delay uncertainty is assumed to be bounded by a function of all the state variables. By suitably choosing the Lyapunov–Krasovskii functionals, a novel adaptive/robust neural tracking control scheme is developed for the first time such that all the states and signals of the closed-loop time-delay robot system are bounded and the tracking error is shown to be uniformly ultimately bounded. By suitably designing the embedded current signal, the effect of time-delay uncertainty in the mechanical dynamics does not require to be incorporated into the current tracking error dynamics, and so the Lyapunov–Krasovskii functionals can be easily constructed in the stability analysis. Compared with the previous investigations of controlling robots the control scheme developed here can be extended to handle a broader class of electrically driven robots perturbed simultaneously by plant uncertainties, time-varying perturbations, and time-delay uncertainties. Finally, simulation examples are made to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

10.
    
The problems of fault diagnosis and fault‐tolerant control are considered for systems with measurement delays. In contrast to the present fault diagnosis and fault‐tolerant control approaches, which consider only the input delay and/or state delay, the main contribution of this paper consists of proposing a new observer‐based reduced‐order fault diagnoser construction approach and a design approach to dynamic self‐restore fault‐tolerant control law for systems with measurement delays. First, the time‐delay system is transformed into a delay‐free system in form by a special functional‐based delay‐free transformation approach for measurement delays. Then, the fault diagnosis is realized online via the proposed reduced‐order fault diagnoser. Using the results of fault diagnosis, two dynamic self‐restore control laws are designed to make the system isolated from faults. A numerical example demonstrates the feasibility and validity of the proposed scheme. © 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
一类非线性时变系统的鲁棒输出跟踪控制   总被引:2,自引:0,他引:2  
研究一类具有非匹配不确定性的非线性时变系统的鲁棒状态反馈输出跟踪控制器设计问题。通过引入非线性时变系统的相对阶将系统输入输出线性化,然后设计出一种基于标称系统和不确定性上界的连接型鲁棒输出跟踪控制器,利用该方案设计的控制器可保证整个闭环系统是一致有界稳定的,且闭环输出可以渐近跟踪期望的轨迹。  相似文献   

12.
    
Bilateral teleoperation technology has caused wide attentions due to its applications in various remote operation systems. The communication delay becomes one of the main challenging issues in the teleoperation control design. Meanwhile, various nonlinearities, parameter variations, and modeling uncertainties existing in manipulator and environment dynamics need to be considered carefully in order to achieve good control performance. In this paper, a globally stable nonlinear adaptive robust control algorithm is developed for bilateral teleoperation systems to deal with these control issues. Namely, the unknown dynamical parameters of the environmental force are estimated online by the improved least square adaptation law. A novel communication structure is proposed where only the master position signal is transmitted to the slave side for the tracking design, and the online estimators of the environmental parameters are transmitted from the slave to the master to replace the traditional environmental force measurement. Because the estimated environmental parameters are not power signals, the passivity problem of the communication channel and the trade‐off limitation between the transparency performance and robust stability in traditional teleoperation control are essentially avoided. The nonlinear adaptive robust control is subsequently developed to deal with nonlinearities, unknown parameters, and modeling uncertainties of the master, slave, and environmental dynamics, so that the guaranteed transient and steady‐state transparency performance can be achieved. The experiments on two voice‐coil motor‐driven manipulators are carried out, and the comparative results verify that the proposed control algorithm achieves the excellent control performance and the guaranteed robust stability simultaneously under time delays. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
    
This article synthesizes a recursive filtering adaptive fault‐tolerant tracking control method for uncertain switched multivariable nonlinear systems. The multivariable nonlinear systems under consideration have both matched and mismatched uncertainties, which satisfy the semiglobal Lipschitz condition. A piecewise constant adaptive law generates adaptive parameters by solving the error dynamics with the neglection of unknowns, and the recursive least squares is employed to minimize the residual error by categorizing the total uncertainty estimates into matched and mismatched components. A filtering control law is designed to compensate the actuator faults and nonlinear uncertainties such that a good tracking performance is delivered with guaranteed robustness. The matched component is canceled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is performed to eliminate the effect of the mismatched component on the output. By exploiting the average dwell time principle, the error bounds are derived for the states and control inputs compared with the virtual reference system which defines the best performance that can be achieved by the closed‐loop system. Both numerical and practical examples are provided to illustrate the effectiveness of the proposed switching recursive filtering adaptive fault‐tolerant tracking control architecture, comparisons with model reference adaptive control are also carried out.  相似文献   

14.
    
Fault‐tolerant control systems are vital in many industrial systems. Actuator redundancy is employed in advanced control strategies to increase system maneuverability, flexibility, safety, and fault tolerability. Management of control signals among redundant actuators is the task of control allocation algorithms. Simplicity, accuracy and low computational cost are key issues in control allocation implementations. In this paper, an adaptive control allocation method based on the pseudo inverse along the null space of the control matrix (PAN) is introduced in order to adaptively tolerate actuator faults. The proposed method solves the control allocation problem with an exact solution and optimized l norm of the control signal. This method also handles input limitations and is computationally efficient. Simulation results are used to show the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
    
This paper synthesizes a filtering adaptive neural network controller for multivariable nonlinear systems with mismatched uncertainties. The multivariable nonlinear systems under consideration have both matched and mismatched uncertainties, which satisfy the semiglobal Lipschitz condition. The nonlinear uncertainties are approximated by a Gaussian radial basis function (GRBF)‐based neural network incorporated with a piecewise constant adaptive law, where the adaptive law will generate adaptive parameters by solving the error dynamics between the real system and the state predictor with the neglection of unknowns. The combination of GRBF‐based neural network and piecewise constant adaptive law relaxes hardware limitations (CPU). A filtering control law is designed to handle the nonlinear uncertainties and deliver a good tracking performance with guaranteed robustness. The matched uncertainties are cancelled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is required to eliminate the effect of the mismatched uncertainties on the output. Since the virtual reference system defines the best performance that can be achieved by the closed‐loop system, the uniform performance bounds are derived for the states and control signals via comparison. To validate the theoretical findings, comparisons between the model reference adaptive control method and the proposed filtering adaptive neural network control architecture with the implementation of different sampling time are carried out.  相似文献   

16.
    
In this paper, an adaptive fault‐tolerant time‐varying formation control problem for nonlinear multiagent systems with multiple leaders is studied against actuator faults and state‐dependent uncertainties. Simultaneously, the followers form a predefined formation while tracking reference signal determined by the convex combination of the multiple leaders. Based on the neighboring relative information, an adaptive fault‐tolerant formation time‐varying control protocol is constructed to compensate for the influences of actuator faults and model uncertainties. In addition, the updating laws can be adjusted online through the adaptive mechanism, and the proposed control protocol can guarantee that all the signals in the closed‐loop systems are bounded. Lyapunov‐like functions are addressed to prove the stability of multiagent systems. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

17.
针对多输入多输出被控过程同时存在状态滞后和控制输入滞后问题,利用预测函数控制算法对预测模型没有特殊要求和在线计算量小的特点,基于预测函数控制设计机理得到系统的控制律.在标称情况下,反馈控制律可表示为无记忆反馈和带记忆反馈的叠加形式.在假设不含时滞标称系统解析的条件下,应用最大模定理和矩阵谱半径性质,给出存在状态滞后和控制输入滞后结构参数摄动不确定系统鲁棒D稳定的充分条件.数值实验和仿真实验验证了所给方法的有效性.  相似文献   

18.
    
This paper focuses on the adaptive stabilization problem for a class of high‐order nonlinear systems with time‐varying uncertainties and unknown time‐delays. Time‐varying uncertain parameters are compensated by combining a function gain with traditional adaptive technique, and unknown multiple time‐delays are manipulated by the delicate choice of an appropriate Lyapunov function. With the help of homogeneous domination idea and recursive design, a continuous adaptive state‐feedback controller is designed to guarantee that resulting closed‐loop systems are globally uniformly stable and original system states converge to zero. The effectiveness of the proposed control scheme is illustrated by the stabilization of delayed neural network systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
    
In this paper, an application of the robust integrated control/diagnosis approach using ??‐optimization techniques to the nonlinear longitudinal dynamics of a Boeing 747‐100/200 aircraft is presented. The integrated approach allows to address directly the trade‐off between the conflicting controller and fault diagnosis objectives. The integrated design formulation (interconnection and weight selection) is defined using five LTI plants obtained through out the Up‐and‐Away flight envelope. Linear and nonlinear closed‐loop time simulations are carried out under a realistic turbulence and noise environment. A comparison drawn with the non‐integrated design of a controller and a diagnosis filter with the same objectives shows that the integrated case results in similar diagnosis characteristics but improved fault tolerant performance and ease of design. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
    
The ocean bottom flying node (OBFN) is a special autonomous underwater vehicle (AUV) for seabed resource exploration. In this article, unmodeled uncertainties, thruster faults, and ocean disturbances are considered. The trajectory errors are constrained. Based on the directed topology, the distributed finite‐time fault‐tolerant error constraint containment control problem for multiple OBFN systems is solved, while only a part of follower OBFNs can measure the state of leaders. By using the backstepping method and a tan‐type barrier lyapunov function (BLF), a novel form of virtual controller is constructed. Neural network is employed to approximate and compensate the general disturbances. And the upper bound of the estimation error is dealt with by proposing an adaptive law. Besides, the trajectory errors can be constrained to a small neighborhood of zero in finite time. In other words, follower OBFNs can reach the convex hull consisted of leaders in finite time. The effectiveness of the designed algorithm is shown by presenting numerical experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号