共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an adaptive backstepping tracking control scheme is proposed for a class of nonlinear state time‐varying delay systems, which are subject to parametric uncertainties and external disturbances. The bounds of the time delays and their derivatives are assumed to be unknown. Tuning functions method is exploited to construct the control law and adaptive laws. Unknown time‐varying delays are compensated by using appropriate Lyapunov–Krasovskii functional. It is shown that the proposed controller can guarantee the boundedness of all the closed‐loop signals. The tracking performance can be adjusted by choosing suitable design parameters. At the end, a simulation example is provided to illustrate the effectiveness of the design procedure. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Asymptotic moving object tracking with trajectory tracking extension: A homography‐based approach 下载免费PDF全文
In this paper, a homography‐based visual servo controller is developed for a rigid body to track a moving object in three‐dimensional space with a fixed relative pose. Specifically, a monocular camera is mounted on the rigid body, and the desired relative pose is expressed by a pre‐recorded reference image. Homography is exploited to obtain the orientation and scaled position for controller design. Considering the unknown moving object's velocities and distance information, a continuous nonlinear visual controller is developed using the robust integral of the signum of the error methodology. To facilitate the stability analysis, the system uncertainties regarding the moving object's velocities and distance information are divided into the error‐unrelated system uncertainties and the error‐related system uncertainties. After that, the upper bounds of the error‐related system uncertainties are derived with composited system errors. An asymptotic tracking of the leading object is proved based on the Lyapunov methods and the derived upper bounds. In addition, the proposed controller is extended to address the trajectory tracking problem. Simulation results validate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
3.
4.
In this paper, we investigate the problem of output‐feedback tracking control for a class of nonlinear SISO systems in the strick‐feedback form, which are subject to both uncertain delay‐related functions and disturbances. A reduced‐order observer is first introduced to provide the estimates of the unmeasured states. Then, an output‐feedback controller is recursively designed based on the backsteppng method. By constructing an appropriate Lyapunov–Krasovskii functional, we prove that all the signals in the closed‐loop system are bounded. The tracking performance is guaranteed by suitably choosing the design parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed control algorithm. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
This paper presents the design of a robust control law for a class of nonlinear dynamical systems subjected to parametric uncertainty and simultaneous unknown, variable state and input delays. A novel controller is developed, which consists of a filtered tracking error and the integral of previous values of control input where the limits of integration are dependent on the known bound of the input delay. Lyapunov‐Krasovskii functionals–based stability analysis guarantees a global uniformly ultimately bounded tracking result where sufficient conditions on controller gains and maximum allowable delay are derived. The performance and robustness of the controller are evaluated by simulation on a two‐link robot manipulator for different combinations of time‐varying state and input delays. 相似文献
6.
Nonlinear control for reactive navigation of a nonholonomic robot for environmental nongradient‐based extremum seeking in maze‐like scenes 下载免费PDF全文
A single Dubins car‐like mobile robot travels with a constant speed in a planar workspace cluttered with arbitrarily complex obstacles, possibly maze‐like ones. An unknown scalar field is defined on the plane. The sensors supply the robot with the field value at its current location and its distance to the nearest obstacle. We present a new control law that drives the robot to the location where the field attains its maximum, while avoiding collisions with the obstacles. This is justified by a mathematically rigorous global convergence result and is confirmed via computer simulations. The proposed algorithm does not use gradient estimation and is nondemanding with respect to computation and motion. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
7.
H.J. Estrada-García O. Peñaloza-Mejía C.H. Moog 《International journal of control》2013,86(8):1202-1209
The trajectory tracking problem is considered for a general class of non-linear time-delay systems. The existence of causal static state feedback solutions is investigated within an algebraic approach. Two classes of causal static compensators are considered that either involve delayed dynamics or not. Sufficient conditions are derived which are weaker than the ones existing in the current literature. These results are innovative for both linear and non-linear time-delay systems. The most advanced results do not imply a maximal loss of observability in opposition to more standard solutions. 相似文献
8.
This paper addresses the problem of global state feedback stabilization for a class of inherently higher‐order parameterized nonlinear systems subject to time delay. By using the homogeneous domination approach, we construct a homogeneous state feedback controller with an adaptive strategy. A constructive design method is developed based an effective coupling of the inductive method and a sign function, leading to adaptive regulators with minimal parameterization. With the aid of a homogeneous Lyapunov‐Krasovskii functional, the closed‐loop systems can be asymptotically stabilized globally. 相似文献
9.
Stabilization of strict‐feedback nonlinear systems with input delay using closed‐loop predictors 下载免费PDF全文
Filippo Cacace Francesco Conte Alfredo Germani Pierdomenico Pepe 《国际强度与非线性控制杂志
》2016,26(16):3524-3540
》2016,26(16):3524-3540
In this paper, we consider the control problem of strict‐feedback nonlinear systems with time‐varying input and output delays. The approach is based on the usual observer/predictor/feedback approach, but the novelty is the use of the closed‐loop dynamics in the predictor. This approach allows to develop two designs, an instantaneous predictor and a delay differential equation‐based predictor, that both attain the same performance in terms of system trajectories and input signal as in the case with no delays. The design based on delay differential equations allows to build a cascade of predictors to deal with arbitrarily large delay bounds. The resulting controller is much simpler to implement than classical infinite‐dimensional predictors, and it is robust with respect to actuation and measurement disturbances. We illustrate the approach with an application to the control of a chaotic system with input delay. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
This paper addresses the design of low‐level controllers for leader–follower formations of nonholonomic vehicles in the presence of bounded measurement delays. The concept of input‐to‐state stability is extended to encompass the effect of bounded delays and restrictions on the input. A method is proposed to integrate a Smith predictor in a backstepping design on the basis of nested saturations and nonlinear small‐gain assignment, which allows for time delays in the feedback loop. Robustness analysis under uncertain bounded time delays is provided, and design tradeoffs resulting from the use of bounded controls are discussed. Illustrative simulations are shown to validate the design and robustness analysis in the context of a simple leader–follower trailing control problem. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
In this paper, a repetitive learning control (RLC) approach is proposed for a class of remote control nonlinear systems satisfying the global Lipschitz condition. The proposed approach is to deal with the remote tracking control problem when the environment is periodic or repeatable over infinite time domain. Since there exist time delays in the two transmission channels: from the controller to the actuator and from the sensor to the controller, tracking a desired trajectory through a remote controller is not an easy task. In order to solve the problem caused by time delays, a predictor is designed on the controller side to predict the future state of the nonlinear system based on the delayed measurements from the sensor. The convergence of the estimation error of the predictor is ensured. The gain design of the predictor applies linear matrix inequality (LMI) techniques developed by Lyapunov Kravoskii method for time delay systems. The RLC law is constructed based on the feedback error from the predicted state. The overall tracking error tends to zero asymptotically over iterations. The proof of the stability is based on a constructed Lyapunov function related to the Lyapunov Kravoskii functional used for the proof of the predictor's convergence. By well incorporating the predictor and the RLC controller, the system state tracks the desired trajectory independent of the influence of time delays. A numerical simulation example is shown to verify the effectiveness of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
Robust consensus tracking for a class of heterogeneous second‐order nonlinear multi‐agent systems 下载免费PDF全文
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
This article focuses on the adaptive tracking control problem for a class of interconnected nonlinear stochastic systems under full‐state constraints based on the hybrid threshold strategy. Different from the existing works, we propose a novel pre‐constrained tracking control algorithm to deal with the full‐state constraint problem. First, a novel nonlinear transformation function and a new coordinate transformation are developed to constrain state variables, which can directly cope with asymmetric state constraints. Second, the hybrid threshold strategy is constructed to provide a reasonable way in balancing system performance and communication constraints. By the use of dynamic surface control technique and neural network approximate technique, a smooth pre‐constrained tracking controller with adaptive laws is designed for the interconnected nonlinear stochastic systems. Moreover, based on the Lyapunov stability theory, it is proved that all state variables are successfully pre‐constrained within asymmetric boundaries. Finally, a simulation example is presented to verify the effectiveness of proposed control algorithm. 相似文献
14.
This paper investigates the finite‐time output tracking for a class of switched nonlinear systems in p‐normal form. Compared with the existing results, the restrictions on power orders of the system are relaxed. Using the convex combination method and the adding a power integrator technique, a state‐dependent switching and law, and state feedback controllers of individual subsystems are constructed. It is shown that all states of the closed‐loop system are bounded, and the tracking error can converge to a small neighborhood of zero in finite time. An example is provided to show the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
Additive‐state‐decomposition‐based tracking control framework for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances 下载免费PDF全文
This paper aims to propose an additive‐state‐decomposition‐based tracking control framework, based on which the output feedback tracking problem is solved for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances. This framework is to ‘additively’ decompose the output feedback tracking problem into two more tractable problems, namely an output feedback tracking problem for a linear time invariant system and a state feedback stabilization problem for a nonlinear system. Then, one can design a controller for each problem respectively using existing methods, and these two designed controllers are combined together to achieve the original control goal. The main contribution of the paper lies on the introduction of an additive state decomposition scheme and its implementation to mitigate the design difficulty of the output feedback tracking control problem for nonminimum phase nonlinear systems. To demonstrate the effectiveness, an illustrative example is given. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Mario J. Miranda 《Computational Economics》1997,11(1-2):71-87
In this paper, I compare the accuracy, efficiency and stability of different numerical strategies for computing approximate solutions to the nonlinear rational expectations commodity market model. I find that polynomial and spline function collocation methods are superior to the space discretization, linearization and least squares curve-fitting methods that have been preferred by economists in the past. 相似文献
17.
Rajeev R. Raje Barrett R. Bryant Andrew M. Olson Mikhail Auguston Carol Burt 《Concurrency and Computation》2002,14(12):1009-1034
Component‐based software development offers a promising solution for taming the complexity found in today's distributed applications. Today's and future distributed software systems will certainly require combining heterogeneous software components that are geographically dispersed. For the successful deployment of such a software system, it is necessary that its realization, based on assembling heterogeneous components, not only meets the functional requirements, but also satisfies the non‐functional criteria such as the desired quality of service (QoS). In this paper, a framework based on the notions of a meta‐component model, a generative domain model and QoS parameters is described. A formal specification based on two‐level grammar is used to represent these notions in a tightly integrated way so that QoS becomes a part of the generative domain model. A simple case study is described in the context of this framework. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
18.
In this paper, we consider a class of MIMO nonlinear systems with fast time‐varying parametric uncertainties. First, the tracking problem of general nonlinearly time‐varyingly parameterized systems is solved. Then, a Lyapunov‐based singularity free adaptive controller is proposed for the considered system. Specifically, an estimation approach with a proportional plus integral adaptation scheme is utilized to update the estimations of the unknown parameters under a mild assumption that the signs of the leading minors of the input gain matrix are known. The asymptotic stability is achieved with full state feedback. Furthermore, we design an output feedback controller by utilizing a standard high‐gain observer and achieve uniformly ultimately bounded convergence. Simulation examples illustrate the effectiveness of the proposed methods. 相似文献
19.
Observer‐based fault estimators using iterative learning scheme for nonlinear time‐delay systems with intermittent faults 下载免费PDF全文
This paper deals with the intermittent fault estimation problem for a class of nonlinear time‐delay systems with measurement noise. The time delays are assumed to occur in state vector, nonlinear term as well as output vector, thus reflecting the time delays influence in reality more closely. The aim of the problem is to estimate the intermittent fault by using iterative learning scheme, with the property of index, hence attenuating the influence from measurement noise. Different from existing fault estimating schemes, the state error information and fault estimating information in the previous iteration are used in the current iteration to improve the estimating results. The stability and convergence of iterative learning observer and uniform boundedness of dynamic error system are achieved by using Lyapunov function and optimal function design. Simultaneously, an improved sufficient condition for the existence of such an estimator is established in terms of the linear matrix inequality by the Schur complements and Young relations. Furthermore, the results are both suited for the systems with time‐varying delay and the systems with constant delay. Finally, two numerical examples are proposed to illustrate the effectiveness of the proposed method, and a comparability example is presented to demonstrate its superiority. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
20.
An output feedback trajectory tracking controller for a kind of 3 degrees of freedom (DOF) ship motion nonlinear model is designed. The closed‐loop control system is proven to be uniformly semi‐globally exponential stable with a separate stability result for the observer by applying nonlinear cascaded system theory. Simulation results on a model ship, Cybership II, are presented to validate the proposed control scheme. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献