首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the fixed‐time coordinated tracking problem for a class of nonlinear multi‐agent systems under detail‐balanced directed communication graphs. Different from conventional finite‐time coordinated tracking strategies, the fixed‐time approach developed in this paper guarantees that a settling time bound is prescribed without dependence on initial states of agents. First, for the case of a single leader, a distributed protocol based on fixed‐time stability techniques is proposed for each follower to accomplish the consensus tracking in a fixed time. Second, in the presence of multiple leaders, a new distributed protocol is proposed such that states of followers converge to the dynamic convex hull spanned by those of leaders in a fixed time. In addition, for a class of linear multi‐agent systems, sufficient conditions that guarantee the fixed‐time coordinated tracking are provided. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.  相似文献   

2.
This paper investigates the distributed finite‐time consensus‐tracking problem for coupled harmonic oscillators. The objective is to guarantee a team of followers modeled by harmonic oscillators to track a dynamic virtual leader in finite time. Only a subset of followers can access the information of the virtual leader, and the interactions between followers are assumed to be local. We consider two cases: (i) The followers can obtain the relative states between their neighbors and their own; and (ii) Only relative outputs between neighboring agents are available. In the former case, a distributed consensus protocol is adopted to achieve the finite‐time consensus tracking. In the latter case, we propose a novel observer‐based dynamic protocol to guarantee the consensus tracking in finite time. Simulation examples are finally presented to verify the theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on the distributed event‐triggered fixed‐time consensus control problem of leader‐follower multiagent systems with nonlinear dynamics and uncertain disturbances. Two distributed fixed‐time consensus protocols are proposed based on distributed event‐triggered strategies, which can substantially reduce energy consumption and the frequency of the controller updates. It is proved that under the proposed distributed event‐triggered consensus tracking control strategies, the Zeno behavior is avoided. Compared with the finite‐time consensus tracking, the fixed‐time consensus tracking can be achieved within a settling time regardless of the initial conditions. Finally, 2 examples are performed to validate the effectiveness of the distributed event‐triggered fixed‐time consensus tracking controllers.  相似文献   

4.
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, the problem of event‐triggered‐based fixed‐time sliding mode cooperative control is addressed for a class of leader‐follower multiagent networks with bounded perturbation. First, a terminal integral sliding mode manifold with fast convergent speed is designed. Then, a distributed consensus tracking control strategy based on event‐triggered and sliding mode control is developed that guarantees the multiagent networks achieve consensus within a fixed time which is independent of initial states of agents in comparison with the finite‐time convergence. Furthermore, the update frequency of control law can be considerably reduced and Zeno behavior can be removed by utilizing the proposed event‐triggered control algorithm. Simulation examples are used to show the effectiveness of the new control protocol.  相似文献   

6.
Practical time‐varying formation tracking analysis and design problems for high‐order nonlinear multiagent systems with directed interaction topologies are investigated by using the distributed disturbance observer, where the time‐varying formation tracking error can be controlled within an arbitrarily small bound. Different from the previous work, there exists a predefined time‐varying formation formed by the states of the followers and the formation tracks the convex combination of the states of the leaders with unknown control inputs. Besides, the leaders can be multiple, and the dynamics of each follower has heterogeneous nonlinearity and disturbance. First, a distributed disturbance observer‐based practical time‐varying formation tracking protocol is constructed using neighboring relative information, where only a part of the followers, which are named as well‐informed ones, are required to obtain the information of the multiple leaders. The proposed protocol can process the heterogeneous nonlinearity, the disturbance of each follower, and the unknown control inputs of the leaders simultaneously. Then, an algorithm with 2 steps is presented to design the practical time‐varying formation tracking protocol by solving an algebraic Riccati equation and an algebraic equation, where the time‐varying formation tracking feasibility condition is introduced. Moreover, the stability of the closed‐loop multiagent system under the proposed protocol is proved by using the properties of the Laplacian matrix and the Lyapunov stability theory. Finally, a numerical simulation example is provided to illustrate the effectiveness of the obtained theoretical results.  相似文献   

7.
This paper investigates finite‐time formation tracking control problem for multiple quadrotors with external disturbance. The states of the virtual leader are not available to all the followers and the network topology is described by a directed graph. The model of each quadrotor is divided into position subsystem and attitude subsystem. Firstly, novel distributed finite‐time state observers are designed to estimate the relative state errors between followers and the virtual leader. Secondly, the values of these observers are used to design controllers that achieve finite‐time robust coordinated tracking in the position subsystem. Thirdly, the terminal sliding mode disturbance observers and finite‐time attitude tracking controllers are proposed, respectively, in the attitude subsystem to estimate the external disturbance and achieve attitude tracking control. The finite‐time stability analysis of the control algorithms is carried out using the Lyapunov theory and the homogeneous technique. Finally, the efficiency of the proposed algorithm is illustrated by numerical simulations.  相似文献   

8.
In this paper, the containment control problem is considered for nonlinear multi‐agent systems with directed communication topology. Under the guidance of designed distributed communication protocols with/without previous state information, the followers are expected to converge to a dynamic convex hull spanned by multiple leaders. Two multi‐step algorithms are proposed to construct the corresponding protocols, the state feedback protocol and the delay‐coupled protocol, under which the containment control can be achieved asymptotically. Furthermore, it is found that the delay‐coupled protocol is rather sensitive to time delays. That is, real‐time tracking will become impossible by only using long‐dated previous state information. Finally, a numerical example is given to demonstrate the applicability and efficiency of the proposed schemes.  相似文献   

9.
This paper studies the attitude‐synchronization flocking problem for multiple 3‐dimensional nonholonomic agents. By analyzing the nonlinearity of the nonholonomic model and invoking the neighbor‐based design principle, we develop a distributed linear control protocol with the local information from each agent and its neighbors in proximity, especially, no position measurement is employed. Based on max‐min and Lyapunov stability theory, the proposed distributed control protocol can ensure the 3 flocking rules and attitude synchronization meanwhile, if collision avoidance and communication connectivity are guaranteed at the initial time. Additionally, numerical simulations are provided to verify the theoretical results.  相似文献   

10.
The distributed tracking control for multiple Euler‐Lagrange systems with a dynamic leader is investigated in this article via the event‐triggered approach. Only a portion of followers have access to the leader, and the communication topology among all agents is directed that contains a directed spanning tree rooted at the leader. The case that the leader's generalized velocity is constant is first considered, and a distributed event‐based control law is developed by using a velocity estimator. When the leader's generalized velocity is time‐varying, novel distributed continuous estimators are proposed to avoid the undesirable chattering effect while guaranteeing that the estimate errors converge to zeros. With the designed distributed estimators, another distributed event‐based control protocol is provided. Controller update frequency and resource consumption in our work can be reduced by applying the aforementioned two distributed control laws, and the tracking errors can converge to zeros. In addition, it is rigorously proved that no agent exhibits Zeno behavior. Finally, the effectiveness of the proposed distributed event‐based control laws is elucidated by a number of simulation examples.  相似文献   

11.
This paper is concerned with the problem of fixed‐time consensus tracking control for a class of second‐order multiagent systems under an undirected communication graph. A distributed output‐feedback fixed‐time consensus tracking control scheme is proposed to make the states of all individual agents simultaneously track a time‐varying reference state even when the reference state is available only to a subset of the group members and only output measurements are available for feedback. Homogeneous Lyapunov function and homogeneity property are employed to show that the control scheme can guarantee the consensus tracking errors converging the origin in finite time which is bounded by a fixed constant independent of initial conditions. Numerical simulations are carried out to demonstrate the effectiveness of the proposed control law.  相似文献   

12.
This paper investigates the joint effects of agent dynamic and network topology on the consensusability of linear discrete‐time multi‐agent systems via relative output feedback. An observer‐based distributed control protocol is proposed. A necessary and sufficient condition for consensusability under this control protocol is given, which explicitly reveals how the intrinsic entropy rate of the agent dynamic and the eigenratio of the undirected communication graph affect consensusability. As a special case, multi‐agent systems with discrete‐time double integrator dynamics are discussed where a simple control protocol directly using two‐step relative position feedback is provided to reach a consensus. Finally, the result is extended to solve the formation and formation‐based tracking problems. The theoretical results are illustrated by simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

14.
The consensus problem is investigated in this paper for a class of multi‐agent systems with general linear node dynamics and directed communication topologies. A new distributed observer‐type consensus protocol is designed based only on the relative output measurements of neighboring agents. Compared with existing observer‐type protocols, the one presented here does not require information about the relative states of the observers. Tools from small gain theory and matrix analysis, some sufficient conditions are obtained for achieving consensus in such multi‐agent systems where the underlying network topology contains a directed spanning tree. Finally, some numerical examples including an application in low‐Earth‐orbit satellite formation flying are provided to illustrate the theoretical results.  相似文献   

15.
This paper addresses the synchronization problems with/without a dynamic leader for a team of distributed Lagrange systems on digraph. A systematic way to design and analyze the distributed control algorithms is presented. The contributions of the paper are twofold. First, the adaptive coordination control protocols are proposed for synchronization of networked uncertain Lagrange systems with/without tracking. This protocol can guarantee synchronization in finite time. Second, the design of the distributed tracking controller for the networked dynamic systems is proposed by using Lyapunov methods. The development is suitable for the general digraph communication topologies. Simulation examples are included to demonstrate the effectiveness of the proposed algorithms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Without assuming that the mobile agents can communicate with their neighbors all the time, the consensus problem of multi‐agent systems with general linear node dynamics and a fixed directed topology is investigated. To achieve consensus, a new class of distributed protocols designed based only on the intermittent relative information are presented. By using tools from matrix analysis and switching systems theory, it is theoretically shown that the consensus in multi‐agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low‐dimensional switching systems. It is proved that there exists a protocol guaranteeing consensus if each agent is stabilizable and the communication rate is larger than a threshold value. Furthermore, a multi‐step intermittent consensus protocol design procedure is provided. The consensus algorithm is then extended to solve the formation control problem of linear multi‐agent systems with intermittent communication constraints as well as the consensus tracking problem with switching directed topologies. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
This paper focuses on the event‐based distributed robust leaderless synchronization control for multiple Euler‐Lagrange systems with directed communication topology that contains a directed spanning tree. Update frequency of the system is reduced by taking advantages of the event‐triggered approach, which can help extend the service life of the controller. Robust control theory is employed to guarantee the synchronization stability of the networked Euler‐Lagrange systems when unmodeled dynamics occur. The cost on the distributed synchronization protocol design can be saved due to the relaxation of the requirement on relative velocity measurements. Furthermore, our results are more practical because unknown disturbance is taken into consideration. In addition, it can be rigorously analyzed that each agent can exclude the undesired Zeno behavior. Some simulation examples are provided in the end to demonstrate the effectiveness of the proposed event‐based distributed robust control algorithm.  相似文献   

19.
This paper investigates the problem of consensus tracking control for second‐order multi‐agent systems in the presence of uncertain dynamics and bounded external disturbances. The communication ?ow among neighbor agents is described by an undirected connected graph. A fast terminal sliding manifold based on lumped state errors that include absolute and relative state errors is proposed, and then a distributed finite‐time consensus tracking controller is developed by using terminal sliding mode and Chebyshev neural networks. In the proposed control scheme, Chebyshev neural networks are used as universal approximators to learn unknown nonlinear functions in the agent dynamics online, and a robust control term using the hyperbolic tangent function is applied to counteract neural‐network approximation errors and external disturbances, which makes the proposed controller be continuous and hence chattering‐free. Meanwhile, a smooth projection algorithm is employed to guarantee that estimated parameters remain within some known bounded sets. Furthermore, the proposed control scheme for each agent only employs the information of its neighbor agents and guarantees a group of agents to track a time‐varying reference trajectory even when the reference signals are available to only a subset of the group members. Most importantly, finite‐time stability in both the reaching phase and the sliding phase is guaranteed by a Lyapunov‐based approach. Finally, numerical simulations are presented to demonstrate the performance of the proposed controller and show that the proposed controller exceeds to a linear hyperplane‐based sliding mode controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies the time‐varying output formation tracking (OFT) problems for linear heterogeneous multiagent systems with multiple leaders, where both the followers and the leaders can have nonidentical dynamics and dimensions. The existing results on formation tracking with multiple leaders depend on the assumption that each follower is well‐informed or uninformed, where the well‐informed follower has all the leaders as its neighbor. To remove this assumption, a novel OFT approach is presented using a distributed observer scheme. Firstly, based on the local estimation and the interaction with neighboring followers, a fully distributed observer is designed for each follower to estimate the dynamical matrices and the states of multiple leaders without requiring the well‐informed follower assumption. The convergence of the distributed observer is proved by using Lyapunov theory. Then, an adaptive algorithm is proposed to solve the regulator equations in finite time based on the estimation of the leaders' dynamical matrices. Furthermore, the desired time‐varying output formation of each follower is generated by a local active exosystem. A time‐varying OFT protocol is presented using the estimated states of multiple leaders, the online solutions of the regulator equations, and the desired formation vector generated by the local exosystem. It is proved that the outputs of the followers can not only realize the expected formation shape but also track the predefined convex combination of multiple leaders. Finally, a simulation example is given to verify the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号