首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper is concerned with observer‐based H output tracking control for networked control systems. An observer‐based controller is implemented through a communication network to drive the output of a controlled plant to track the output of a reference model. The inputs of the controlled plant and the observer‐based tracking controller are updated in an asynchronous way because of the effects of network‐induced delays and packet dropouts in the controller‐to‐actuator channel. Taking the asynchronous characteristic into consideration, the resulting closed‐loop system is modeled as a system with two interval time‐varying delays. A Lyapunov–Krasovskii functional, which makes use of information about the lower and upper bounds of the interval time‐varying delays, is constructed to derive a delay‐dependent criterion such that the closed‐loop system has a desired H tracking performance. Notice that a separation principle cannot be used to design an observer gain and a control gain due to the asynchronous inputs of the plant and the controller. Instead, a novel design algorithm is proposed by applying a particle swarm optimization technique with the feasibility of the stability criterion to search for the minimum H tracking performance and the corresponding gains. The effectiveness of the proposed method is illustrated by an example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the problem of finite‐time H control is addressed for a class of discrete‐time switched nonlinear systems with time delay. The concept of H finite‐time boundedness is first introduced for discrete‐time switched delay systems. Next, a set of switching signals are designed by using the average dwell time approach, under which some delay‐dependent sufficient conditions are derived to guarantee the H finite‐time boundedness of the closed‐loop system. Then, a finite‐time H state feedback controller is also designed by solving such conditions. Furthermore, the problem of uniform finite‐time H stabilization is also resolved. All the conditions are cast into linear matrix inequalities, which can be easily checked by using recently developed algorithms for solving linear matrix inequalities. A numerical example and a water‐quality control system are provided to demonstrate the effectiveness of the main results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper addresses the problems of local stabilization and control of open‐loop unstable discrete‐time quadratic systems subject to persistent magnitude bounded disturbances and actuator saturation. Firstly, for some polytopic region of the state‐space containing the origin, a method is derived to design a static nonlinear state feedback control law that achieves local input‐to‐state stabilization with a guaranteed stability region under nonzero initial conditions and persistent bounded disturbances. Secondly, the stabilization method is extended to deliver an optimized upper bound on the ?‐induced norm of the closed‐loop system for a given set of persistent bounded disturbances. Thirdly, the stabilization and ? designs are adapted to cope with actuator saturation by means of a generalized sector bound constraint. The proposed controller designs are tailored via a finite set of state‐dependent linear matrix inequalities. Numerical examples are presented to illustrate the potentials of the proposed control design methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with network‐based H stabilization for stochastic systems, where network‐induced delays, packet dropouts, and packet disorders are taken into account simultaneously. The packet disorders arising from both the sampler‐to‐controller channel and the controller‐to‐actuator channel are considered by introducing a logic controller and a logic zero‐order hold. The network‐induced delays and packet dropouts are modeled as a constant delay plus a non‐differentiable time‐varying delay in the input. By employing Lyapunov–Krasovskii functional approach, we establish results that parallel well‐known bounded real Lemmas. More specifically, these results provide conditions to bound the H level of the system, which means the worst case energy of the output of the system when subjected to a unitary norm deterministic disturbance signal. On the basis of these results, suitable network‐based H controllers are designed by using cone complementary linearization method. An air vehicle system is finally taken as an example to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We present a robust H observer for a class of nonlinear discrete‐time systems. The class under study includes an unknown time‐varying delay limited by upper and lower bounds, as well as time‐varying parametric uncertainties. We design a nonlinear H observer, by using the upper and lower bounds of the delay, that guarantees asymptotic stability of the estimation error dynamics and is also robust against time‐varying parametric uncertainties. The described problem is converted to a standard optimization problem, which can be solved in terms of linear matrix inequalities (LMIs). Then, we expand the problem to a multi‐objective optimization problem in which the maximum admissible Lipschitz constant and the minimum disturbance attenuation level are the problem objectives. Finally, the proposed observer is illustrated with two examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the H control problem for a class of systems with bounded random delays and consecutive packet dropouts that exist in both sensor‐to‐controller channel and controller‐to‐actuator channel during data transmission. A new model is developed to describe possible random delays and packet dropouts by two groups of Bernoulli distributed stochastic variables. To avoid the state augmentation, a full‐order observer‐based feedback controller is designed via LMI approach. Based on the Lyapunov theory, a sufficient condition is provided to guarantee the closed‐loop networked system to be asymptotically mean‐square stable and achieve the prescribed H disturbance‐rejection‐attenuation level. The simulation examples illustrate the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the novel approaches of designing robust fuzzy static output feedback H controller for a class of nonlinear singularly perturbed systems. Specifically, the considered system is approximated by a fuzzy singularly perturbed model. With the use of linear matrix inequality (LMI) methods, two methods are provided to design fuzzy static output feedback H controllers. The resulted controllers can guarantee that the closed‐loop systems are asymptotically stable and satisfy H performances for sufficiently small ?. In contrast to the existing results, the proposed approaches have two advantages: (i) the gains of controller are solved directly by a set of ?‐independent LMIs, and therefore, the problem of selecting the initial values in iterative LMIs algorithm can be avoided, and (ii) the smaller control input efforts are needed. The given methods are easy to implement and can be applied to both standard and nonstandard nonlinear singularly perturbed systems. Two numerical examples are provided to illustrate the effectiveness of the developed methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the problem of robust H control for a class of discrete‐time Markovian jump systems subject to both actuator saturation and incomplete knowledge of transition probability. Different from the previous results where the transition probability is completely known, a more general situation where only partial information on the exact values of elements in transition probability matrix is considered. By introducing some free parameters to express the relationship for the known and the unknown elements of transition probability matrix in stability analysis, a criterion is established to guarantee the stochastic stability of the closed‐loop system as well as an H performance index. The concept of domain of attraction in mean square sense is used to analyze the closed‐loop stability, and the mode‐dependent H state‐feedback controller is designed. It is shown that, even in the absence of actuator saturation, the obtained result is less conservative than the existing one. A numerical example is provided to illustrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper considers the problems of robust non‐fragile stochastic stabilization and H control for uncertain time‐delay stochastic systems with time‐varying norm‐bounded parameter uncertainties in both the state and input matrices. Attention is focused on the design of memoryless state feedback controllers which are subject to norm‐bounded uncertainties. For both the cases of additive and multiplicative controller uncertainties, delay‐independent sufficient conditions for the solvability of the above problems are obtained. The desired state feedback controller can be constructed by solving a certain linear matrix inequality.  相似文献   

11.
This paper is concerned with the problem of robust H controller design for a class of uncertain networked control systems (NCSs). The network‐induced delay is of an interval‐like time‐varying type integer, which means that both lower and upper bounds for such a kind of delay are available. The parameter uncertainties are assumed to be normbounded and possibly time‐varying. Based on Lyapunov‐Krasovskii functional approach, a robust H controller for uncertain NCSs is designed by using a sum inequality which is first introduced and plays an important role in deriving the controller. A delay‐dependent condition for the existence of a state feedback controller, which ensures internal asymptotic stability and a prescribed H performance level of the closed‐loop system for all admissible uncertainties, is proposed in terms of a nonlinear matrix inequality which can be solved by a linearization algorithm, and no parameters need to be adjusted. A numerical example about a balancing problem of an inverted pendulum on a cart is given to show the effectiveness of the proposed design method.  相似文献   

12.
In this paper, we present a new scheme for designing a H stabilizing controller for discrete‐time Takagi‐Sugeno fuzzy systems with actuator saturation and external disturbances. The weighting‐dependent Lyapunov functions approach is used to design a robust static output‐feedback controller. To address the input saturation problem, both constrained and saturated control input cases are considered. In both cases, stabilization conditions of the fuzzy system are formulated as a convex optimization problem in terms of linear matrix inequalities. Two simulation examples are included to illustrate the effectiveness of the proposed design methods. A comparison with the results given in recent literature on the subject is also presented.  相似文献   

13.
This paper presents a new method to synthesize a decentralized state feedback robust H controller for a class of large‐scale linear uncertain systems satisfying integral quadratic constraints. The decentralized controller is constructed by taking only block‐diagonal elements of a nondecentralized state feedback controller and treating neglected off‐diagonal blocks as uncertainties. A solution to this controller synthesis problem is given in terms of a stabilizing solution to a parametrized algebraic Riccati equation where the parameters are obtained using a differential evolution algorithm.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a new method to construct a decentralized nonlinear robust H controller for a class of large‐scale nonlinear uncertain systems. The admissible uncertainties and nonlinearities in the system satisfy integral quadratic constraints and global Lipschitz conditions, respectively. The decentralized controller, which is required to be stable, is capable of exploiting known nonlinearities and interconnections between subsystems without treating them as uncertainties. Instead, additional uncertainties are introduced because of the discrepancies between nondecentralized and decentralized nonlinear output feedback controllers. The H control objective is to achieve an absolutely stable closed‐loop system with a specified disturbance attenuation level. A solution to this control problem involves stabilizing solutions to algebraic Riccati equations parametrized by scaling constants corresponding to the uncertainties and nonlinearities. This formulation is nonconvex; hence, an evolutionary optimization method is applied to solve the control problem considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

16.
In this paper, the problem of non‐fragile observer‐based H control for discrete‐time switched delay systems is investigated. Both data missing and time delays are taken into account in the links from sensors to observers and from controllers to actuators. Because data missing satisfies the Bernoulli distribution, such problem is transformed into an H control problem for stochastic switched delay systems. Average dwell time approach is used to obtain sufficient conditions on the solvability of such problems. A numerical example and a real example for water quality control are provided to illustrate the effectiveness and potential applications of the proposed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the output‐feedback control problem of a vehicle active seat‐suspension system is investigated. A novel optimal design approach for an output‐feedback H controller is proposed. The main objective of the controller is to minimize the seat vertical acceleration to improve vehicle ride comfort. First, the human body and the seat are considered in the modeling of a vehicle active suspension system, which makes the model more precise. Other constraints, such as tire deflection, suspension deflection and actuator saturation, are also considered. Then the output‐feedback control strategy is adopted since some state variables, such as body acceleration and body deflection, are unavailable. A concise and effective approach for an output‐feedback H optimal control is presented. The desired controller is obtained by solving the corresponding linear matrix inequalities (LMIs) and by the calculation of equations proposed in this paper. Finally, a numerical example is presented to show the effectiveness and advantages of the proposed controller design approach.  相似文献   

18.
This paper studies the resilient (non‐fragile) H∞ output‐feedback control design for discrete‐time uncertain linear systems with controller uncertainty. The design considers parametric norm‐bounded uncertainty in all state‐space matrices of the system, output and controller equations. The paper shows that the resilient H∞ output‐feedback control problem is equivalent to a scaled H∞ output‐feedback control problem of an auxiliary system without any system or controller uncertainty. Using the existing optimal H∞ design to solve the auxiliary system, the design guarantees that the resultant closed‐loop systems are quadratically stable with disturbance attenuation γ for all admissible system and controller uncertainties. A numerical example is given to illustrate the design method and its benefits.  相似文献   

19.
In this paper, we show that small artificial delays in the feedback loops operating in different time scales may stabilize singularly perturbed systems (SPSs). An artificial delay approach is proposed for the robust stabilization and L2‐gain analysis of SPSs in the finite frequency domain. A two‐time‐scale delayed static output feedback controller is designed, in which the controller gains are formulated via a linear matrix inequality (LMI) algorithm. A distinctive feature of the proposed algorithm is setting controller parameters as free variables, which increases the degrees of freedom in controller design and leads to more flexibility in solving LMIs. Moreover, the proposed method is further extended to analyze the finite frequency system specifications of SPSs. The L2‐gain performance analysis is conducted for parameter‐independent subsystems in their dominant frequency ranges, and the disturbance attenuation level of the original high‐order system is then estimated. Finally, the efficiency of the proposed design method is verified in an active suspension system subject to multiple finite frequency disturbance.  相似文献   

20.
This paper investigates the problem of designing a nonlinear H output feedback controller for a class of polynomial discrete‐time systems. In general, this problem is hard to be formulated in a convex form because the relation between the control input and the Lyapunov function is always not jointly convex. Therefore, the problem cannot be solved via semidefinite programming (SDP). On the basis of the sum of squares (SOS) approach and incorporation of an integrator into the controller, sufficient conditions for the existence of a nonlinear H output feedback controller are given in terms of SOS conditions, which can be solved by an SDP solver. In contrast to the existing methods, a less conservative result is obtained. Finally, numerical examples are used to demonstrate the validity of this integrator approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号