首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
In this paper, the problem of finite‐time H control is addressed for a class of discrete‐time switched nonlinear systems with time delay. The concept of H finite‐time boundedness is first introduced for discrete‐time switched delay systems. Next, a set of switching signals are designed by using the average dwell time approach, under which some delay‐dependent sufficient conditions are derived to guarantee the H finite‐time boundedness of the closed‐loop system. Then, a finite‐time H state feedback controller is also designed by solving such conditions. Furthermore, the problem of uniform finite‐time H stabilization is also resolved. All the conditions are cast into linear matrix inequalities, which can be easily checked by using recently developed algorithms for solving linear matrix inequalities. A numerical example and a water‐quality control system are provided to demonstrate the effectiveness of the main results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper studies the problem of H output tracking control for a class of discrete‐time switched systems. Neither the measurability of the system state nor the solvability of the output tracking control problem for each individual subsystem is required. We design controllers for subsystems and a switching law to solve the H output tracking problem for the switched system. The designed controllers use only the measured output feedback, and the switching law is based on the measured output tracking error. In addition, the quadratic function corresponding to each subsystem is not required to be positive definite. A numerical example is provided to demonstrate the feasibility and validity of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the problem of non‐fragile observer‐based H control for discrete‐time switched delay systems is investigated. Both data missing and time delays are taken into account in the links from sensors to observers and from controllers to actuators. Because data missing satisfies the Bernoulli distribution, such problem is transformed into an H control problem for stochastic switched delay systems. Average dwell time approach is used to obtain sufficient conditions on the solvability of such problems. A numerical example and a real example for water quality control are provided to illustrate the effectiveness and potential applications of the proposed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
We present a robust H observer for a class of nonlinear discrete‐time systems. The class under study includes an unknown time‐varying delay limited by upper and lower bounds, as well as time‐varying parametric uncertainties. We design a nonlinear H observer, by using the upper and lower bounds of the delay, that guarantees asymptotic stability of the estimation error dynamics and is also robust against time‐varying parametric uncertainties. The described problem is converted to a standard optimization problem, which can be solved in terms of linear matrix inequalities (LMIs). Then, we expand the problem to a multi‐objective optimization problem in which the maximum admissible Lipschitz constant and the minimum disturbance attenuation level are the problem objectives. Finally, the proposed observer is illustrated with two examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
This paper considers the problem of observer‐based H controller design for a class of discrete‐time nonhomogeneous Markov jump systems with nonlinear input. Actuator saturation is considered to be a nonlinear input of such system and the time‐varying transition probability matrix in the system is described as a polytope set. Furthermore, a mode‐dependent and parameter‐dependent Lyapunov function is investigated, and a sufficient condition is derived to design observer‐based controllers such that the resulting error dynamical system is stochastically stable and a prescribed H performance is achieved. Finally, estimation of attraction domain of such nonhomogeneous Markov jump systems is also made. A simulation example shows the effectiveness of developed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies the resilient (non‐fragile) H∞ output‐feedback control design for discrete‐time uncertain linear systems with controller uncertainty. The design considers parametric norm‐bounded uncertainty in all state‐space matrices of the system, output and controller equations. The paper shows that the resilient H∞ output‐feedback control problem is equivalent to a scaled H∞ output‐feedback control problem of an auxiliary system without any system or controller uncertainty. Using the existing optimal H∞ design to solve the auxiliary system, the design guarantees that the resultant closed‐loop systems are quadratically stable with disturbance attenuation γ for all admissible system and controller uncertainties. A numerical example is given to illustrate the design method and its benefits.  相似文献   

8.
This paper addresses the finite horizon H control problem for a class of discrete‐time nonlinear Markov jump systems with multiplicative noise and nonlinear feedback device. The system nonlinearity occurs in a random way specified by a Bernoulli process, whereas the actuator and sensor nonlinearities are restricted to a sector region. Both the state and the dynamic output feedback H controllers are devised in terms of difference LMIs. The proposed approach not only allows the resulting system to achieve a prescribed disturbance attenuation level, but also enables the output of actuator/sensor to meet the designated sector condition. Moreover, it is also shown that our approach is well‐adapted for dealing with the discrete‐time Markov jump systems with saturated actuator and sensor. Finally, a backward iterative algorithm is provided to solve the obtained difference LMIs and a numerical example is presented to verify the efficiency of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the problem of robust H control for a class of discrete‐time Markovian jump systems subject to both actuator saturation and incomplete knowledge of transition probability. Different from the previous results where the transition probability is completely known, a more general situation where only partial information on the exact values of elements in transition probability matrix is considered. By introducing some free parameters to express the relationship for the known and the unknown elements of transition probability matrix in stability analysis, a criterion is established to guarantee the stochastic stability of the closed‐loop system as well as an H performance index. The concept of domain of attraction in mean square sense is used to analyze the closed‐loop stability, and the mode‐dependent H state‐feedback controller is designed. It is shown that, even in the absence of actuator saturation, the obtained result is less conservative than the existing one. A numerical example is provided to illustrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, robust stochastic stabilization and H control for a class of uncertain discrete‐time linear systems with Markovian jumping parameters are considered. Based on a new bounded real lemma derived upon an inequality recently proposed, a new iterative state‐feedback controller design procedure for discrete time‐delay systems is presented. Sufficient conditions for stochastic stabilization are derived in the form of linear matrix inequalities (LMIs) based on an equivalent model transformation, and the corresponding H control law is given. Finally, numerical examples are given to illustrate the solvability of the problems and effectiveness of the results.  相似文献   

11.
In this paper, antidisturbance control and estimation problem are discussed for a class of discrete‐time stochastic systems with nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors. A disturbance observer is constructed to estimate the disturbance with partially known information. A composite hierarchical antidisturbance control scheme is proposed by combining disturbance observer and H control. It is proved that the 2 different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete‐time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

12.
This paper investigates the problem of designing a nonlinear H output feedback controller for a class of polynomial discrete‐time systems. In general, this problem is hard to be formulated in a convex form because the relation between the control input and the Lyapunov function is always not jointly convex. Therefore, the problem cannot be solved via semidefinite programming (SDP). On the basis of the sum of squares (SOS) approach and incorporation of an integrator into the controller, sufficient conditions for the existence of a nonlinear H output feedback controller are given in terms of SOS conditions, which can be solved by an SDP solver. In contrast to the existing methods, a less conservative result is obtained. Finally, numerical examples are used to demonstrate the validity of this integrator approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the problem of delay‐dependent exponential H filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on H filtering for a class of linear periodic systems with a certain type of norm-bounded time-varying parameter uncertainty which appears in both the state and output matrices. The problem addressed is the design of a linear periodic estimator that guarantees both the quadratic stability and and prescribed H performance on infinite horizon for the estimation error for all admissible parameter uncertainties. A solution to this problem is obtained via a Riccati equation approach.  相似文献   

15.
In this paper, the distributed H robust control problem synthesized with transient performance is investigated for a group of autonomous agents governed by uncertain general linear node dynamics. Based on the relative information between neighboring agents and some information of other agents, distributed state‐feedback and observer‐type output‐feedback control protocols are designed and analyzed, respectively. By using tools from robust control theory, conditions for the existence of controllers for solving such a problem are established. It is shown that the problem of distributed H robust control synthesized with transient performance can be converted to the H control problem synthesized with transient performance for decoupled linear systems of the same low dimensions. Finally, simulation examples are provided to illustrate the effectiveness of the design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with the optimal time‐weighted H2 model reduction problem for discrete Markovian jump linear systems (MJLSs). The purpose is to find a mean square stable MJLS of lower order such that the time‐weighted H2 norm of the corresponding error system is minimized for a given mean square stable discrete MJLSs. The notation of time‐weighted H2 norm of discrete MJLS is defined for the first time, and then a computational formula of this norm is given, which requires the solution of two sets of recursive discrete Markovian jump Lyapunov‐type linear matrix equations. Based on the time‐weighted H2 norm formula, we propose a gradient flow method to solve the optimal time‐weighted H2 model reduction problem. A necessary condition for minimality is derived, which generalizes the standard result for systems when Markov jumps and the time‐weighting term do not appear. Finally, numerical examples are used to illustrate the effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the problem of exponential H filtering for stochastic systems with time delays and Markovian jumping parameters. On the basis of Lyapunov–Krasovskii functional theory and generalized Finsler lemma, a delay‐dependent bounded real lemma is established without using any model transformations, bounding techniques for cross terms, or additional free matrix variables. The obtained bounded real lemma guarantees that the filtering error system is both mean‐square exponentially stable and almost surely exponentially stable with a prescribed H noise attenuation level. Then an exponential H filter is designed for stochastic retarded Markovian jump systems in terms of a set of LMIs. Meanwhile, the mathematical equivalence of the proposed method to one recent method is presented, but our proposed method is more computationally efficient with fewer matrix variables than that recent method. The validity of the method is verified by a numerical example.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an approach to design robust non‐fragile HL2 ? L static output feedback controller, considering actuator time‐delay and the controller gain variations, and it is applied to design vehicle active suspension. According to suspension design requirements, the H and L2 ? L norms are used, respectively, to reflect ride comfort and time‐domain hard constraints. By employing a delay‐dependent Lyapunov function, existence conditions of delay‐dependent robust non‐fragile static output feedback H controller and L2 ? L controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities. Then, a new procedure based on LMI optimization and a hybrid algorithm of the particle swarm optimization and differential evolution is used to solve an optimization problem with bilinear matrix inequality constraints. Simulation results show that the designed active suspension system still can guarantee their own performance in spite of the existence of the model uncertainties, the actuator time‐delay and the controller gain variations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper provides solvability conditions for state synchronization with homogeneous discrete‐time multiagent systems with a directed and weighted communication network under partial‐ or full‐state coupling. Our solvability conditions reveal that the synchronization problem is solvable for all possible, a priori given, set of graphs associated with a communication network only under the condition that the agents are at most weakly unstable (ie, agents have all eigenvalues in the closed unit disc). However, if an upper bound on the eigenvalues inside the unit disc of the row stochastic matrices associated with any graph in a given set of graphs is known, then one can achieve synchronization for a class of unstable agents. We provide protocol design for at most weakly unstable agents based on a direct eigenstructure assignment method and a standard H2 discrete‐time algebraic Riccati equation. We also provide protocol design for strictly unstable agents (ie, agents have at least one eigenvalue outside the unit disc) based on the standard H2 discrete‐time algebraic Riccati equation.  相似文献   

20.
This paper is concerned with the decentralized H controller synthesis problem for discrete‐time LTI systems. Despite of intensive research efforts over the last several decades, this problem is believed to be nonconvex and still outstanding in general. Therefore, most of existing approaches resort to heuristic optimization algorithms that do not allow us to draw any definite conclusion on the quality of the designed controllers. To get around this difficulty, in this paper, we propose convex optimization procedures for computing lower bounds of the H performance that is achievable via decentralized LTI controllers of any order. In particular, we will show that sharpened lower bounds can be obtained by making good use of structures of the LTI plant typically observed in the decentralized control setting. We illustrate via numerical examples that these lower bounds are indeed useful to ensure the good quality of decentralized controllers designed by a heuristic optimization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号