共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the mean square node‐to‐node consensus tracking problem for multi‐agent systems with nonidentical nonlinear dynamics and directed topologies. The randomly occurred uncertainties in the sampling devices may result in stochastically varied sampling periods, which lead to the investigation of node‐to‐node consensus problem under stochastic sampling. By employing the input‐delay method and discontinuous Lyapunov functional approach, it arrives at some sufficient conditions under which the state of each follower can track that of the corresponding leader asymptotically in the mean square sense. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
This paper proposes a distributed edge event‐triggered (DEET) scheme of multi‐agent systems via a communication buffer to reduce unnecessary update of controllers induced by fast information transmission. This edge scheme avoids a synchronous phenomenon in node event‐triggered mechanism, in which the triggering of one agent activates information transmission of all edges linked with this agent. Hence, the node event‐triggered scheme leads to unnecessary update of control protocols while the DEET provides a new approach without constrains on synchronous phenomenon of edge information exchange. That is, the communication on each edge is independent with other edges. In addition, we investigate another case where edge information transmission is subject to quantization and a quantized edge event‐triggered control protocol is proposed. Note that such a quantized protocol guarantees asymptotical consensus instead of bounded consensus in most of the existing literature. Meanwhile, both DEET and quantized edge event‐triggered schemes have nontrivial properties of excluding Zeno behavior. Furthermore, an algorithm is provided to avoid continuous event detection; hence, the communication traffic of the whole network is reduced significantly. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
This paper studies mean‐field games for multiagent systems with control‐dependent multiplicative noises. For the general systems with nonuniform agents, we obtain a set of decentralized strategies by solving an auxiliary limiting optimal control problem subject to consistent mean‐field approximations. The set of decentralized strategies is further shown to be an ε‐Nash equilibrium. For the integrator multiagent systems, we design a set of ε‐Nash strategies by exploiting the convexity property of the limiting problem. It is shown that under the mild conditions, all the agents achieve mean‐square consensus. 相似文献
4.
This paper addresses the distributed observer‐based consensus problem of second‐order multi‐agent systems via sampled data. Firstly, for the case of fixed topology, a velocity‐independent distributed control law is proposed by designing a distributed observer to estimate the unavailable velocity, then a sufficient and necessary condition of consensus on design parameters and sampling period is obtained by using the matrix analysis method. Secondly, for the case of stochastically switching topology, a sufficient and necessary condition of mean square consensus is also proposed and proven, and an algorithm is provided to design the parameters in the consensus protocol. Two simulation examples are given to illustrate the effectiveness of the proposed consensus algorithms. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Distributed dynamic average consensus is investigated under quantized communication data. We use a uniform quantizer with constant quantization step‐size to deal with the saturation caused by the dynamic consensus error and propose a communication feedback‐based distributed consensus protocol suitable for directed time‐varying topologies to make the internal state of each agent's encoder consistent with the output of its neighbors' decoder. For the case where the communication topology is directed, balanced and periodically connected, it is shown that if the difference of the reference inputs satisfies some boundedness condition, then the designed quantized dynamic consensus protocol can ensure the states of all the agents achieve dynamic average consensus with arbitrarily small steady state error by properly choosing system parameters. The lower bound of the required quantization levels and the method to choose the system parameters are also presented. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
This study considers the formation problem for multi‐agent systems, which are described by the second‐order dynamics on nonlinear manifolds SE(2) and SE(3). In particular, the model of each agent contains information about its attitude. Using a consensus strategy, a control law is developed to guarantee that any desired formation can be achieved asymptotically under the conditions of complete or tree‐shaped communication topologies. Numerical simulations are presented to verify the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
This paper studies bipartite consensus problems for continuous‐time multi‐agent system over signed directed graphs. We consider general linear agents and design both state feedback and dynamic output feedback control laws for the agents to achieve bipartite consensus. Via establishing an equivalence between bipartite consensus problems and the conventional consensus problems under both state feedback and output feedback control approaches, we make direct application of existing state feedback and output feedback consensus algorithms to solve bipartite consensus problems. Moreover, we propose a systematical approach to design bipartite consensus control laws. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
We consider a distributed consensus problem for continuous‐time multi‐agent systems with set constraints on the final states. To save communication costs, an event‐triggered communication‐based protocol is proposed. By comparing its own instantaneous state with the one previously broadcasted to neighbours, each agent determines the next communication time. Based on this event‐triggered communication, each agent is not required to continuously monitor its neighbours' state and the communication only happens at discrete time instants. We show that, under some mild conditions, the constrained consensus of the multi‐agent system with the proposed protocol can be achieved with an exponential convergence rate. A lower bound of the transmission time intervals is provided that can be adjusted by choosing different values of parameters. Numerical examples illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
This paper investigates the distributed finite‐time consensus‐tracking problem for coupled harmonic oscillators. The objective is to guarantee a team of followers modeled by harmonic oscillators to track a dynamic virtual leader in finite time. Only a subset of followers can access the information of the virtual leader, and the interactions between followers are assumed to be local. We consider two cases: (i) The followers can obtain the relative states between their neighbors and their own; and (ii) Only relative outputs between neighboring agents are available. In the former case, a distributed consensus protocol is adopted to achieve the finite‐time consensus tracking. In the latter case, we propose a novel observer‐based dynamic protocol to guarantee the consensus tracking in finite time. Simulation examples are finally presented to verify the theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
This paper investigates the problem of finite‐time consensus (FTC) for second‐order nonlinear multi‐agent systems when the velocity information is unavailable. Based on the global finite‐time stability theory and homogeneity with dilation, a class of novel finite‐time consensus protocols are proposed for the multi‐agent systems. The protocol design is divided into two parts. First, when all the state information of the agents are measurable, a new continuous state feedback is designed to achieve FTC. Then, when the velocity information is unmeasurable, two finite‐time convergent discontinuous observers are presented to estimate the velocities of the followers and the leader, respectively, which further ensure the final FTC for the multi‐agent systems. Finally, one example is given to demonstrate the efficiency of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
This paper characterizes a unified consensus region for multi‐agent systems, where there exist fixed physical connections with information exchange. The notions of synchronization region in complex networks and consensus region in multi‐agent systems can be explained under this unified framework. The effect of the coupling terms on the consensus regions in different situations is analyzed specifically. Furthermore, necessary and sufficient conditions for consensus of agents under both distributed state feedback and observer‐based output feedback control are established. On the basis of a parameter‐dependent Lyapunov function, a 2‐step controller design procedure is proposed, which can reduce the conservativeness to some extent in comparison with the conventional direct Lyapunov method. In addition, for the case with disturbance, the robustness of the system is investigated. Finally, some numerical examples are presented to illustrate the theoretical results. 相似文献
12.
Bo Zhou Xiaofeng Liao Tingwen Huang Huaqing Li Guo Chen 《Asian journal of control》2017,19(2):564-574
In this paper, we consider the semiglobal leader‐following consensus of general linear multi‐agent systems subject to input saturation. First, an event‐triggered control protocol is provided to ensure semiglobal consensus of the multi‐agent systems, in which the agents should continuously monitor the information of their neighbors. Second, a self‐triggered control protocol is proposed to guarantee the semiglobal consensus of the multi‐agent systems, in which the agents only have access to the information of their neighbors in discrete time instants. Moreover, both event‐triggered control protocol and self‐triggered control protocol are proved to be Zeno‐free, that is, the inter‐event times for such two protocols have positive lower bounds. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed event‐based semiglobal consensus protocols. 相似文献
13.
This paper considers the containment control problems for both continuous‐time and discrete‐time multi‐agent systems with general linear dynamics under directed communication topologies. Distributed dynamic containment controllers based on the relative outputs of neighboring agents are constructed for both continuous‐time and discrete‐time cases, under which the states of the followers will asymptotically converge to the convex hull formed by those of the leaders if, for each follower, there exists at least one leader that has a directed path to that follower. Sufficient conditions on the existence of these dynamic controllers are given. Static containment controllers relying on the relative states of neighboring agents are also discussed as special cases. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
15.
Yi Guo 《国际强度与非线性控制杂志
》2015,25(13):2019-2040
》2015,25(13):2019-2040
We consider distributed estimation on a directed graph with switching topologies. Motivated by a recent PI consensus filter, we modify the protocol and remove the requirement of bidirectional exchange of neighboring gains for fixed topologies. We then extend the protocol to switching topologies and propose a new hybrid consensus filter design. Convergence results under both balanced directed, and general directed graphs are given for switching graphs. Consensus error bounds are analytically derived in the case of time‐varying inputs. Satisfactory simulation results are shown. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Large, experimental multi‐agent system (MAS) simulations are highly demanding tasks, both computationally and developmentally. Agent toolkits provide reliable templates for the design of even the largest MAS simulations, without offering a solution to computational limitations. Conversely, distributed simulation architectures offer performance benefits, but the introduction of parallel logic can complicate the design process significantly. The motivations of distribution are not limited to this question of processing power. True interoperation of sequential agent‐simulation platforms would allow agents designed using different toolkits to transparently interact in common abstract domains. This paper discusses the design and implementation of a system capable of harnessing the computational power of a distributed simulation infrastructure with the design efficiency of an agent toolkit. The system permits integration, through a higher‐level architecture (HLA) federation, of multiple instances of the Java‐based lightweight agent‐simulation toolkit RePast. This paper defines abstractly the engineering process necessary in creating such middleware, and reports on the experience in the specific case of the RePast toolkit. The paper also presents performance results that illustrate that significant speedup can be achieved through the integration of RePast with HLA. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Firstly, guaranteed cost consensus for multi‐agent systems is introduced based on state errors among neighboring agents and control inputs of all agents, where a tradeoff between the consensus regulation performance and the control effort is considered. Then, a sufficient condition for guaranteed cost consensus is given by the state‐space decomposition approach and the Lyapunov method, where an upper bound of the cost function is determined and an approach is proposed to determine the control gain. It is worth mentioning that the criterions for guaranteed cost consensus are only dependent on the maximum eigenvalue of the Laplacian matrices of switching topologies. Finally, numerical simulations are given to demonstrate theoretical results. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
This paper studies the problem of minimizing the sum of convex functions that all share a common global variable, each function is known by one specific agent in the network. The underlying network topology is modeled as a time‐varying sequence of directed graphs, each of which is endowed with a non‐doubly stochastic matrix. We present a distributed method that employs gradient‐free oracles and push‐sum algorithms for solving this optimization problem. We establish the convergence by showing that the method converges to an approximate solution at the expected rate of , where T is the iteration counter. A numerical example is also given to illustrate the proposed method. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
Huan Pan 《Asian journal of control》2014,16(1):188-197
This paper is concerned with the leader‐following consensus problem for multi‐agent systems consisting of one stationary leader and multiple cooperative followers, where the controlling effect of each follower depends on its own state. It is noted that the influence of diffusion among followers is taken into account and the system is modeled by reaction‐diffusion equations. With the assumption of the followers' initial states, a linear control protocol is designed. Based on algebraic graph theory, the method of energy estimates, and Sobolev embedding theorem, the sufficient conditions guaranteeing the leader‐following consensus under the proposed control protocol are provided. Numerical examples illustrate the effectiveness of the theoretical results. 相似文献
20.
Output Consensus of Heterogeneous Linear Multi‐agent Systems Subject to Different Disturbances
下载免费PDF全文

This paper investigates the output consensus problem of heterogeneous linear multi‐agent systems with individual agents subject to different disturbances. A distributed control law based on internal reference models and dynamic output feedback is presented for output consensus. It is shown that the embedded internal reference models of agents can achieve consensus to a common trajectory which is determined by the underlying system topology and the initial states of the internal reference models. Then a necessary and sufficient condition is presented for output consensus of heterogeneous linear multi‐agent systems. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control laws. 相似文献