首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents a comparison study of different control schemes for grid‐connected three phase two‐level power converters. All control strategies adopt the double‐loop control structure which consists of voltage regulation loop and instantaneous power tracking loop. In the external loop, voltage regulation loop, PI, fuzzy PI, adaptive controllers and PI controller plus extended state observer (ESO) are utilized to regulate the output voltage. The merits, drawbacks and design procedures of four methods are compared, investigated and analyzed. The second order sliding mode (SOSM) controllers are applied into the internal loop, instantaneous power tracking loop, to drive the active power and reactive power tracking their set points. The performance differences of these control strategies are compared through the real simulation.  相似文献   

2.
The problem of robust decentralized control of positive fractional‐order interconnected systems with heterogeneous time‐varying delays is studied in this paper. Necessary and sufficient conditions are first derived for internal positiveness of the system. By exploiting the monotonicity induced from positivity of the system, robust stability conditions subject to uncertain system parameters are derived. The derived stability conditions are then utilized to address the controller synthesis problem. The design conditions for obtaining controller gains of stabilizing decentralized controllers are formulated using linear programming, which can be effectively solved by various convex optimization algorithms. Finally, the effectiveness of the obtained results is validated by two numerical examples.  相似文献   

3.
The problem of transient stability and voltage regulation for a single machine infinite bus (SMIB) system is addressed in this paper. An improved Backstepping design method for transient stability enhancement and voltage regulation of power systems is discussed beginning with the classical Backstepping to designing the nonlinear excitation control of synchronous generator. Then a more refined version of this technique will be suggested incorporating the sliding mode control to enhance voltage regulation and transient stability. The proposed method is based on a standard third-order model of a synchronous generator connected to the grid (SMIB system). It is basically implemented on the excitation side of the synchronous generator and compared to the classical Backstepping controller as well as the conventional controllers which are the automatic voltage regulator and the power system stabiliser. Simulation results prove the effectiveness of the proposed method which ameliorates to a great extent the transient stability compared to the other methods.  相似文献   

4.
针对一类存在模型不确定性和未知非线性扰动的机器人系统,考虑其不确定项和未知扰动项的上界是关于系统状态的普通高阶多项式,结合模糊系统的逼近能力,提出了一种基于滑模控制原理的自适应模糊分散控制方法.该方法不仅能够使得关节之间相互耦合的机器人各关节的控制器仅由本关节的信息就能完全确定,而且消除了现存文献在设计机器人分散控制器...  相似文献   

5.
A stable decentralized adaptive fuzzy sliding mode control scheme is proposed for reconfigurable modular manipulators to satisfy the concept of modular software. For the development of the decentralized control, the dynamics of reconfigurable modular manipulators is represented as a set of interconnected subsystems. A first‐order Takagi–Sugeno fuzzy logic system is introduced to approximate the unknown dynamics of subsystem by using adaptive algorithm. The effect of interconnection term and fuzzy approximation error is removed by employing an adaptive sliding mode controller. All adaptive algorithms in the subsystem controller are derived from the sense of Lyapunov stability analysis, so that resulting closed‐loop system is stable and the trajectory tracking performance is guaranteed. The simulation results are presented to show the effectiveness of the proposed decentralized control scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper a novel hybrid direct/indirect adaptive fuzzy neural network (FNN) moving sliding mode tracking controller for chaotic oscillation damping of power systems is developed. The proposed approach is established by providing a tradeoff between the indirect and direct FNN controllers. It is equipped with a novel moving sliding surface (MSS) to enhance the robustness of the controller against the present system uncertainties and unknown disturbances. The major contribution of the paper arises from the new simple tuning idea of the sliding surface slope and intercept of the MSS. This study is novel because the approach adopted tunes the sliding surface slope and intercept of MSS using two simple rules simultaneously. One advantage of the proposed approach is that the restriction of knowing the bounds of uncertainties is also removed due to the adaptive mechanism. Moreover, the stability of the control system is also presented. The proposed controller structure is successfully employed to damp the complicated chaotic oscillations of an interconnected power system, when such oscillations can be made by load perturbation of a power system working on its stability edges. Comparative simulation results are presented, which confirm that the proposed hybrid adaptive type‐2 fuzzy tracking controller shows superior tracking performance.  相似文献   

7.
This paper proposes a hybrid controller which is a combination sliding mode control and PI control techniques for AC grid integrated offshore wind farm (OSWF) with voltage source converter ‐ high voltage direct current system. The controller must be capable of controlling AC voltage, DC‐link voltage, reactive power and effective power transfer. To examine the FRT capability, a symmetrical fault is applied at onshore AC grid side and compared the performances of the studied system based on the hybrid and PI controllers. The dynamic modelling and linearized system by state‐space modelling for the studied system are explained in detail. The small signal stability analysis and controller stability are observed with the help of the eigenvalue analysis. The analysis of the studied system with a hybrid and conventional controllers are conducted in the software environment of the MATLAB/SIMULINK . The effect of parameter uncertainty on total system stability is examined with the help of eigenmatrix of the studied system.  相似文献   

8.
In this paper, based on a structure preserving power system with a unified power flow controller (UPFC), using pseudo‐generalized Hamiltonian function method and boundary‐function method, a nonlinear robust coordinated control law is constructed for multi‐machine power system oscillation damping. The 4‐machine 2‐area power system is used to demonstrate the performance of the proposed controller. Simulation results indicate that the proposed coordinated control scheme can effectively improve both transient stability and voltage regulation performance of the power system. ©2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd  相似文献   

9.
A robust fractional‐order dynamic output feedback sliding mode control (DOF‐SMC) technique is introduced in this paper for uncertain fractional‐order nonlinear systems. The control law consists of two parts: a linear part and a nonlinear part. The former is generated by the fractional‐order dynamics of the controller and the latter is related to the switching control component. The proposed DOF‐SMC ensures the asymptotical stability of the fractional‐order closed‐loop system whilst it is guaranteed that the system states hit the switching manifold in finite time. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

10.
Non‐minimum phase tracking control is studied for boost and buck‐boost power converters. A sliding mode control algorithm is developed to track directly a causal voltage tracking profile given by an exogenous system. The approximate causal output non‐minimum phase asymptotic tracking in non‐linear boost and buck‐boost power converters is addressed via sliding mode control using a dynamic sliding manifold (DSM). Use of DSM allows the stabilization of the internal dynamics when the output tracking error tends asymptotically to zero in the sliding mode. The sliding mode controller with DSM links features of conventional sliding mode control (insensitivity to matched non‐linearities and disturbances) and a conventional dynamic compensator (accommodation to unmatched disturbances). Numerical examples demonstrate the effectiveness of the sliding mode controller even for a known time‐varying load. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
基于模糊控制理论和滑模控制理论以及自适应控制理论,研究了一类含有外部扰动的不确定分数阶混沌系统的混合投影同步问题.提出了一种自适应模糊滑模控制的分数阶混沌系统投影同步方法.模糊逻辑系统用来逼近未知的非线性函数和外部扰动,并且对逼近误差采用了自适应控制,同时构造了一种具有较强鲁棒性的分数阶积分滑模面.应用分数阶Barbalat引理设计了自适应模糊滑模控制器和参数自适应律.最后数值仿真结果验证了所提控制方法的有效性.  相似文献   

12.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a novel decentralized robust adaptive fuzzy control scheme is proposed for a class of large‐scale multiple‐input multiple‐output uncertain nonlinear systems. By virtue of fuzzy logic systems and the regularized inverse matrix, the decentralized robust indirect adaptive fuzzy controller is developed such that the controller singularity problem is addressed under a united design framework; no a priori knowledge of the bounds on lumped uncertainties are being required. The closed‐loop large‐scale system is proved to be asymptotically stable. Simulation results confirmed the validity of the approach presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The attitude tracking of a rigid spacecraft is approached in the presence of uncertain inertias, unknown disturbances, and sudden actuator faults. First, a novel integral terminal sliding mode (ITSM) is designed such that the sliding motion realizes the action of a quaternion‐based nonlinear proportional‐derivative controller. More precisely, on the ITSM, the attitude dynamics behave equivalently to an uncertainty‐free system, and finite‐time convergence of the tracking error is achieved almost globally. A basic ITSM controller is then designed to ensure the ITSM from onset when an upper bound on the system uncertainties is known. Further, to remove this requirement, adaptive techniques are employed to compensate for the uncertainties, and the resultant adaptive ITSM controller stabilizes the system states to a small neighborhood around the sliding surface in finite time. The proposed schemes avoid the singularity intrinsic to terminal sliding mode‐based controllers and the unwinding phenomenon associated with some quaternion‐based controllers. Numerical examples demonstrate the advantageous features of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Minimization of emissions of carbon dioxide and harmful pollutants and maximization of fuel economy for lean‐burn spark ignition (SI) engines relies to a large extent on precise air–fuel ratio (AFR) control. However, the main challenge of AFR control is the large time‐varying delay in lean‐burn engines. Since the system is usually subject to external disturbances and uncertainties, a high level of robustness in AFR control design must be considered. We propose a fuzzy sliding‐mode control (FSMC) to track the desired AFR in the presence of periodic disturbances. The proposed method is model free and does not need any system characteristics. Based on the fuzzy system input–output data, two scaling factors are first employed to normalize the sliding surface and its derivative. According to the concept of the if‐then rule, an appropriate rule table for the logic system is designed. Then, based on Lyapunov stability criteria, the output scaling factor is determined such that the closed‐loop stability of the internal dynamics with uniformly ultimately bounded (UUB) performance is guaranteed. Finally, the feasibility and effectiveness of the proposed control scheme are evaluated under various operating conditions. The baseline controllers, namely, a PI controller with Smith predictor and sliding‐mode controller, are also used to compare with the proposed FSMC. It is shown that the proposed FSMC has superior regulation performance compared to the baseline controllers.  相似文献   

16.
This paper addresses the problem of optimal predefined‐time stability. Predefined‐time stable systems are a class of fixed‐time stable dynamical systems for which the minimum bound of the settling‐time function can be defined a priori as an explicit parameter of the system. Sufficient conditions for a controller to solve the optimal predefined‐time stabilization problem for a given nonlinear system are provided. These conditions involve a Lyapunov function that satisfies a certain differential inequality for guaranteeing predefined‐time stability. It also satisfies the steady‐state Hamilton–Jacobi–Bellman equation for ensuring optimality. Furthermore, for nonlinear affine systems and a certain class of performance index, a family of optimal predefined‐time stabilizing controllers is derived. This class of controllers is applied to optimize the sliding manifold reaching phase in predefined time, considering both the unperturbed and perturbed cases. For the perturbed case, the idea of integral sliding mode control is jointly used to ensure robustness. Finally, as a study case, the predefined‐time optimization of the sliding manifold reaching phase in a pendulum system is performed using the developed methods, and numerical simulations are carried out to show their behavior. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
An adaptive fixed‐time trajectory tracking controller is proposed for uncertain mechanical systems in this study. The polynomial reference trajectory is planned for trajectory tracking error. Fractional power of linear sliding mode is applied to design the nonlinear controller, adaptive laws are used to adjust controller parameters. Trajectory planning and fractional power are combined to ensure the tracking‐error convergence in a fixed time. The boundary layer technique is used to suppress the model uncertainties and decrease the chattering phenomenon. The closed‐loop system stability is proved strictly in the Lyapunov framework to show that the trajectory tracking errors and adaptive parameters tend to zero in a fixed time set in advance. Numerical simulation results of robotic manipulators illustrate the effectiveness of the proposed controller.  相似文献   

18.
In this paper, real‐time results for a novel continuous‐time adaptive tracking controller algorithm for nonlinear multiple input multiple output systems are presented. The control algorithm includes the combination of a recurrent high order neural network with block control transformation using a high order sliding modes technique as control law. A neural network is used to identify the dynamic plant behavior where a filtered error algorithm is used to train the neural identifier. A decentralized high order sliding mode, named the twisting algorithm, is used to design chattering‐reduced independent controllers to solve the trajectory tracking problem for a robot arm with three degrees of freedom. Stability analyses are given via a Lyapunov approach.  相似文献   

19.
The present paper proposes a novel multi‐objective robust fuzzy fractional order proportional–integral–derivative (PID) controller design for nonlinear hydraulic turbine governing system (HTGS) by using evolutionary computation techniques. The fuzzy fractional order PID (FOPID) controller takes closed loop error and its fractional derivative as inputs and performs fuzzy logic operations. Then, it produces the output through the fractional order integrator. The predominant advantages of the proposed controller are its capability to handle complex nonlinear processes like HTGS in heuristic manner, due to fuzzy incorporation and extending an additional flexibility in tuning the order of fractional derivative/integral terms to enhance the closed loop performance. The present work formulates the optimal tuning problem of fuzzy FOPID controller for HTGS as a multi‐objective one instead of a traditional single‐objective one towards satisfying the conflicting criteria such as less settling time and minimum damped oscillations simultaneously to ensure the improved dynamic performance of HTGS. The multi‐objective evolutionary computation techniques such as non‐dominated sorting genetic algorithm‐II (NSGA‐II) and modified NSGA‐II have been utilized to find the optimal input/output scaling factors of the proposed controller along with the order of fractional derivative/integral terms for HTGS system under no load and load turbulence conditions. The performance of the proposed fuzzy FOPID controller is compared with PID and FOPID controllers. The simulations have been conducted to test the tracking capability and robust performance of HTGS during dynamic set point changes for a wide range of operating conditions and model parameter variations, respectively. The proposed robust fuzzy FOPID controller has ensured better fitness value and better time domain specifications than the PID and FOPID controllers, during optimization towards satisfying the conflicting objectives such as less settling time and minimum damped oscillations simultaneously, due to its special inheritance of fuzzy and FOPID properties.  相似文献   

20.
Speed control of induction motors using a novel fuzzy sliding-modestructure   总被引:1,自引:0,他引:1  
This paper presents a new approach to indirect vector control of induction motors. Two nonlinear controllers, one of sliding mode type and the other PI-fuzzy logic-based, define a new control structure. Both controllers are combined by means of an expert system based on Takagi-Sugeno fuzzy reasoning. The sliding-mode controller acts mainly in a transient state while the PI-like fuzzy controller acts in the steady state. The new structure embodies the advantages that both nonlinear controllers offer: sliding-mode controllers increasing system stability limits, and PI-like fuzzy logic based controllers reducing the chattering in permanent state. The scheme has been implemented and experimentally validated  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号