首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with the state estimation problem for the complex networked systems with randomly occurring nonlinearities and randomly missing measurements. The nonlinearities are included to describe the phenomena of nonlinear disturbances which exist in the network and may occur in a probabilistic way. Considering the fact that probabilistic data missing may occur in the process of information transmission, we introduce the randomly data missing into the sensor measurements. The aim of this paper is to design a state estimator to estimate the true states of the considered complex network through the available output measurements. By using a Lyapunov functional and some stochastic analysis techniques, sufficient criteria are obtained in the form of linear matrix inequalities under which the estimation error dynamics is globally asymptotically stable in the mean square. Furthermore, the state estimator gain is also obtained. Finally, a numerical example is employed to illustrate the effectiveness of the proposed state estimation conditions.  相似文献   

2.
In this paper, the state estimation problem is investigated for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays. The norm-bounded uncertainties enter into the system in a randomly way, and such randomly occurring uncertainties (ROUs) obey certain Bernoulli distributed white noise sequence with known conditional probability. By constructing a new Lyapunov–Krasovskii functional, sufficient conditions are proposed to guarantee the convergence of the estimation error for all discrete time-varying delays, ROUs and distributed sensor delays. Subsequently, the explicit form of the estimator parameter is derived by solving two linear matrix inequalities (LMIs) which can be easily tested by using standard numerical software. Finally, a simulation example is given to illustrate the feasibility and effectiveness of the proposed estimation scheme.  相似文献   

3.
In this paper, the problem of robust distributed H filtering is investigated for state‐delayed discrete‐time linear systems over a sensor network with multiple fading measurements, random time‐varying communication delays, and norm‐bounded uncertainties in all matrices of the system. The diagonal matrices, whose elements are individual independent random variables, are utilized to describe the multiple fading measurements. Furthermore, the Bernoulli‐distributed white sequences are introduced to model the random occurrence of time‐varying communication delays. In the proposed filtering approach, the stability of the estimation error system is first shown by the Lyapunov stability theory and the H performance is then achieved using a linear matrix inequality method. Finally, two numerical examples are given to show the effectiveness and performance of the proposed approach.  相似文献   

4.
This paper is concerned with the state estimation problem for two‐dimensional (2D) complex networks with randomly occurring nonlinearities and randomly varying sensor delays. To describe the fact that measurement delays may occur in a probabilistic way, the randomly varying sensor delays are introduced in the delayed sensor measurements. The randomly occurring nonlinearity, on the other hand, is included to account for the phenomenon of nonlinear disturbances appearing in a random fashion that is governed by a Bernoulli distributed white sequence with known conditional probability. The stochastic Brownian motions are also considered, which enter into not only the coupling terms of the complex networks but also the measurements of the output systems. Through available actual network measurements, a state estimator is designed to estimate the true states of the considered 2D complex networks. By utilizing an energy‐like function, the Kronecker product and some stochastic analysis techniques, several sufficient criteria are established in terms of matrix inequalities under which the 2D estimation error dynamics is globally asymptotically stable in the mean square. Furthermore, the explicit expression of the estimator gains is also characterized. Finally, a numerical example is provided to demonstrate the effectiveness of the design method proposed in this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the distributed state estimation problem is investigated for a class of uncertain sensor networks. The target plant is described by a set of uncertain difference equations with both discrete-time and infinite distributed delays, where two random variables are introduced to account for the randomly occurring nonlinearities. The sensor measurement outputs are subject to randomly occurring sensor saturations due to the physical limitations of the sensors. Through available output measurements from each individual sensor and its neighboring sensors, this paper aims to design distributed state estimators to approximate the states of the target plant in a distributed way. Sufficient conditions are presented which not only guarantee the estimation error systems to be globally asymptotically stable in the mean square sense but also ensure the existence of the desired estimator gains.  相似文献   

6.
In this paper, the dissipative control problem is investigated for a class of discrete time-varying systems with simultaneous presence of state saturations, randomly occurring nonlinearities as well as multiple missing measurements. In order to render more practical significance of the system model, some Bernoulli distributed white sequences with known conditional probabilities are adopted to describe the phenomena of the randomly occurring nonlinearities and the multiple missing measurements. The purpose of the addressed problem is to design a time-varying output-feedback controller such that the dissipativity performance index is guaranteed over a given finite-horizon. By introducing a free matrix with its infinity norm less than or equal to 1, the system state is bounded by a convex hull so that some sufficient conditions can be obtained in the form of recursive nonlinear matrix inequalities. A novel controller design algorithm is then developed to deal with the recursive nonlinear matrix inequalities. Furthermore, the obtained results are extended to the case when the state saturation is partial. Two numerical simulation examples are provided to demonstrate the effectiveness and applicability of the proposed controller design approach.  相似文献   

7.
This paper is concerned with the event-triggered distributed state estimation problem for a class of uncertain stochastic systems with state-dependent noises and randomly occurring uncertainties over sensor networks. An event-triggered communication scheme is proposed in order to determine whether the measurements on each sensor should be transmitted to the estimators or not. The norm-bounded uncertainty enters into the system in a random way. Through available output measurements from not only the individual sensor but also its neighbouring sensors, a sufficient condition is established for the desired distributed estimator to ensure that the estimation error dynamics are exponentially mean-square stable. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities, and then the explicit expression is given for the distributed estimator gains. Finally, a simulation example is provided to show the effectiveness of the proposed event-triggered distributed state estimation scheme.  相似文献   

8.
In this work, we focus on distributed moving horizon estimation (DMHE) of nonlinear systems subject to time-varying communication delays. In particular, a class of nonlinear systems composed of subsystems interacting with each other via their states is considered. In the proposed design, an observer-enhanced moving horizon state estimator (MHE) is designed for each subsystem. The distributed MHEs exchange information via a shared communication network. To handle communication delays, an open-loop state predictor is designed for each subsystem to provide predictions of unavailable subsystem states (due to delays). Based on the predictions, an auxiliary nonlinear observer is used to generate a reference subsystem state estimate for each subsystem. The reference subsystem state estimate is used to formulate a confidence region for the actual subsystem state. The MHE of a subsystem is only allowed to optimize its subsystem state estimate within the corresponding confidence region. Under the assumption that there is an upper bound on the time-varying delays, the proposed DMHE is proved to give decreasing and ultimately bounded estimation error. The theoretical results are illustrated via the application to a reactor–separator chemical process.  相似文献   

9.
In this paper, the distributed state estimation problem is investigated for a class of sensor networks described by uncertain discrete‐time dynamical systems with Markovian jumping parameters and distributed time‐delays. The sensor network consists of sensor nodes characterized by a directed graph with a nonnegative adjacency matrix that specifies the interconnection topology (or the distribution in the space) of the network. Both the parameters of the target plant and the sensor measurements are subject to the switches from one mode to another at different times according to a Markov chain. The parameter uncertainties are norm‐bounded that enter into both the plant system as well as the network outputs. Furthermore, the distributed time‐delays are considered, which are also dependent on the Markovian jumping mode. Through the measurements from a small fraction of the sensors, this paper aims to design state estimators that allow the nodes of the sensor network to track the states of the plant in a distributed way. It is verified that such state estimators do exist if a set of matrix inequalities is solvable. A numerical example is provided to demonstrate the effectiveness of the designed distributed state estimators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes new algorithms of adaptive Gaussian filters for nonlinear state estimation with maximum one-step randomly delayed measurements. The unknown random delay is modeled as a Bernoulli random variable with the latency probability known a priori. However, a contingent situation has been considered in this work when the measurement noise statistics remain partially unknown. Due to unavailability of the complete knowledge of measurement noise statistics, the unknown measurement noise covariance matrix is estimated along with states following: (i) variational Bayesian approach, (ii) maximum likelihood estimation. The adaptation algorithms are mathematically derived following both of the above approaches. Subsequently, a general framework for adaptive Gaussian filter is presented with which variants of adaptive nonlinear filters can be formulated using different rules of numerical approximation for Gaussian integrals. This paper presents a few of such filters, viz., adaptive cubature Kalman filter, adaptive cubature quadrature Kalman filter with their higher degree variants, adaptive unscented Kalman filter, and adaptive Gauss–Hermite filter, and demonstrates the comparative performance analysis with the help of a nontrivial Bearing only tracking problem in simulation. Additionally, the paper carries out relative performance comparison between maximum likelihood estimation and variational Bayesian approaches for adaptation using Monte Carlo simulation. The proposed algorithms are also validated with the help of an off-line harmonics estimation problem with real data.  相似文献   

11.
12.
This paper deals with the synchronisation problem for an array of coupled complex discrete-time networks with the presence of randomly occurring information. The time-varying delays, parameter uncertainties and nonlinearities enter into the system in a random way and such randomly occurring time-delays, randomly occurring uncertainties and randomly occurring sector-like nonlinearities obey certain mutually uncorrelated Bernoulli-distributed white-noise sequences. By employing direct delay decomposition approach and constructing suitable Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the synchronisation criteria for the complex networks with randomly occurring information in terms of linear matrix inequalities. Finally, in numerical examples, synchronisation of Barabàsi Albert scale-free networks and chaotic synchronisation of Lorenz system are rendered to exemplify the effectiveness and applicability of the proposed results.  相似文献   

13.
In this paper, a new particle filter is proposed to solve the nonlinear and non-Gaussian filtering problem when measurements are randomly delayed by one sampling time and the latency probability of the delay is unknown. In the proposed method, particles and their weights are updated in Bayesian filtering framework by considering the randomly delayed measurement model, and the latency probability is identified by maximum likelihood criterion. The superior performance of the proposed particle filter as compared with existing methods and the effectiveness of the proposed identification method of latency probability are both illustrated in two numerical examples concerning univariate non-stationary growth model and bearing only tracking.  相似文献   

14.
Distributed problem‐solving (DPS) systems use a framework of human organizational notions and principles of intelligent systems to solve complex problems. Human organizational notions are used to decompose a complex problem into sub‐problems that can be solved using intelligent systems. The solutions of these sub‐problems are combined to solve the original complex problem. In this paper, we propose a DPS system for probabilistic estimation of software development effort. Using a real‐world software engineering dataset, we compare the performance of the DPS system with a neural network (NN) and show that the performance of the DPS system is equal to or better than that of the NN with the additional benefits of modularity, probabilistic estimates, greater interpretability, flexibility and capability to handle incomplete input data.  相似文献   

15.
The saturation input control problem of discrete-time networked systems via adaptive event-triggered communication scheme is discussed in this paper. The criteria are derived by utilising a new Lyapunov functional to guarantee that the considered networked system with randomly occurring infinite distributed delays, random packet losses and sensor saturation is exponentially stable in mean square sense. A novel adaptive event-triggered law is proposed, which is dependent on the exponentially stable index α. The effectiveness of our proposed method is illustrated by both theoretical analysis and numerical simulations.  相似文献   

16.
This article addresses the state estimation in linear time-varying systems with several sensors with different availability, randomly sampled in time and whose measurements have a time-varying delay. The approach is based on a modification of the Kalman filter with the negative-time measurement update strategy, avoiding running back the full standard Kalman filter, the use of full augmented order models or the use of reorganisation techniques, leading to a lower implementation cost algorithm. The update equations are run every time a new measurement is available, independently of the time when it was taken. The approach is useful for networked control systems, systems with long delays and scarce measurements and for out-of-sequence measurements.  相似文献   

17.
This paper is concerned with the robust H finite‐horizon filtering problem for discrete time‐varying stochastic systems with multiple randomly occurred sector‐nonlinearities (MROSNs) and successive packet dropouts. MROSNs are proposed to model a class of sector‐like nonlinearities that occur according to the multiple Bernoulli distributed white sequences with a known conditional probability. Different from traditional approaches, in this paper, a time‐varying filter is designed directly for the addressed system without resorting to the augmentation of system states and measurement, which helps reduce the filter order. A new H filtering technique is developed by means of a set of recursive linear matrix inequalities that depend on not only the current available state estimate but also the previous measurement, therefore ensuring a better accuracy. Finally, two illustrative examples are used to demonstrate the effectiveness and applicability of the proposed filter design scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the state feedback control problem for a class of two-dimensional (2D) discrete-time stochastic systems with time-delays, randomly occurring uncertainties and nonlinearities. Both the sector-like nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and nonlinearities obey certain mutually uncorrelated Bernoulli random binary distribution laws. Sufficient computationally tractable linear matrix inequality–based conditions are established for the 2D nonlinear stochastic time-delay systems to be asymptotically stable in the mean-square sense, and then the explicit expression of the desired controller gains is derived. An illustrative example is provided to show the usefulness and effectiveness of the proposed method.  相似文献   

19.
The state estimation problem is discussed for discrete Markovian jump neural networks with time‐varying delays in terms of linear matrix inequality (LMI) approach. The considered transition probabilities are assumed to be time‐variant and partially unknown. The aim of the state estimation problem is to design a state estimator to estimate the neuron states and ensure the stochastic stability of the error‐state system. A delay‐dependent sufficient condition for the existence of the desired state estimator is proposed. An explicit expression of the desired estimator is also given. A numerical example is introduced to show the effectiveness of the given result. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
This paper studies the exponential stability problems of discrete‐time and continuous‐time impulsive positive switched systems with mixed (discrete and distributed) time‐varying delays, respectively. By constructing novel copositive Lyapunov‐Krasovskii functionals and using the average dwell time technique, delay‐dependent sufficient conditions for the solvability of considered problems are given in terms of fairly simple linear matrix inequalities. Compared with the most existing results, by introducing an extra real vector, restrictive conditions on derivative of the time‐varying delays (less than 1) are relaxed, thus the obtained improved stability criteria can deal with a wider class of continuous‐time positive switched systems with time‐varying delays. Finally, two simple examples are provided to verify the validity of theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号