首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents an approach of integrated guidance and control (IGC) design for interception of maneuvering targets (evaders). An IGC model with uncertainties in the pitch plane is formulated, and, by adopting a backstepping scheme, an adaptive nonlinear IGC approach is developed. Theoretical analysis shows that the design approach makes the line‐of‐sight (LOS) rate be input‐to‐state stable (ISS) with respect to target maneuvers and missile model uncertainties, and the stability of the missile dynamics can be guaranteed as well. The numerical simulation confirms the effectiveness of the proposed design approach.  相似文献   

2.
In this paper, we propose a new robustness notion that is applicable for certifying systems' safety with respect to external disturbance signals. The proposed input‐to‐state safety notion allows us to certify systems' safety in the presence of the disturbances, which is analogous to the notion of input‐to‐state stability for analyzing systems' stability.  相似文献   

3.
This work investigates three‐dimensional accurate guidance problem in the presence of impact angle constraint, input saturation, autopilot lag, and external disturbance, and presents a robust adaptive guidance method for maneuvering targets. More specifically, based on integral Lyapunov control algorithm, a robust guidance law, which can drive both terminal line‐of‐sight angle error and its rate to a small region around zero, while resisting the terrible influence caused by external disturbance, is proposed in this work. To deal with input saturation, guidance command is separated into two parts: real input and saturation error, and an adaptive control technique is employed to compensate the influence resulting from external disturbance and saturation error. Moreover, regarding autopilot lag as a first‐order dynamics, a backstepping designed controller with an adaptive term is proposed. Numerical simulations are carried out and their results demonstrate the proposed properties.  相似文献   

4.
This paper investigates the input‐to‐state stability (ISS) issue for discrete‐time dynamical networks (DDNs) with time delays. Firstly, a general comparison principle for solutions of DDNs is proposed. Then, based on this general comparison principle, three kinds of ISS‐type comparison principles for DDNs are established, including the comparison principle for input‐to‐state ‐stability, ISS, and exponential ISS. The ISS‐type comparison principles are then used to investigate stability properties related to ISS for three kinds (linear, affine, and nonlinear) of DDNs. It shows that the ISS property of a DDN can be derived by comparing it with a linear or lower‐dimension DDN with known ISS property. By using methods such as variation of parameters, uniform M‐matrix, and the ISS‐type comparison principle, conditions of global exponential ISS for time‐varying linear DDNs with time delays are derived. Moreover, the obtained ISS results for DDNs are extended to the hybrid DDNs with time delays. As one application, the synchronization within an error bound in the sense of ISS is achieved for DDNs with coupling time delays and external disturbances. Finally, two examples are given to illustrate the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper proposes a novel three‐dimensional missile guidance law design based on nonlinear H control. The complete nonlinear kinematics of pursuit–evasion motion is considered in the three‐dimensional spherical co‐ordinates system; neither linearization nor small angle assumption is made here. The nonlinear H guidance law is expressed in a simple form by solving the associated Hamilton–Jacobi partial differential inequality analytically. Unlike adaptive guidance laws, the implement of the proposed robust H guidance law does not require the information of target acceleration, while ensuring acceptable interceptive performance for arbitrary target with finite acceleration. The resulting pursuit–evasion trajectories for both the H‐guided missile and the worst‐case target are determined in closed form, and the performance robustness against variations in target acceleration, in engagement condition, and in control loop gain, is verified by numerical simulations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This article studies the drag‐tracking guidance design problem of entry vehicles with low lift‐to‐drag ratio. Taking issues of uncertainty and input saturation into account, we develop a reduced‐order observer‐based robust output feedback guidance law, making the drag‐tracking error converge near zero. Our study not only achieves robust drag‐tracking guidance against inherently existing uncertainty, but also removes the redundant drag estimation in the literature. The Monte Carlo simulation is done to illustrate the advantage of the developed method.  相似文献   

7.
As a practically important class of nonlinear stochastic systems, this paper considers stochastic port‐Hamiltonian systems (SPHSs) and investigates the stochastic input‐to‐state stability (SISS) property of a class of SPHSs. We clarify necessary conditions for the closed‐loop system of an SPHS to be SISS. Moreover, we provide a systematic construction of both the SISS controller and Lyapunov function so that the proposed necessary conditions hold. In the main results, the stochastic generalized canonical transformation plays a key role. The stochastic generalized canonical transformation technique enables to design both coordinate transformation and feedback controller with preserving the SPHS structure of the closed‐loop system. Consequently, the main theorem guarantees that the closed‐loop system obtained by the proposed method is SISS against both deterministic disturbance and stochastic noise. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, several new Razumikhin‐type theorems for impulsive stochastic functional differential equations are studied by applying stochastic analysis techniques and Razumikhin stability approach. By developing a new comparison principle for stochastic version, some novel criteria of the pth moment integral input‐to‐state stability and input‐to‐state stability are derived for the related systems. The feature of the criteria shows that time‐derivatives of the Razumikhin functions are allowed to be indefinite, even unbounded, which can loosen the constraints of the existing results. Finally, some examples are given to illustrate the usefulness and significance of the theoretical results.  相似文献   

9.
This paper investigates the stability of a variable‐speed wind turbine operating under low to medium wind speed. The turbine is controlled to capture as much wind energy as possible. We concentrate on the mechanical level of the turbine system, more precisely on the drive‐train with the standard quadratic generator torque controller. We consider both the one‐mass and the two‐mass models for the drive‐train, with the inputs being the deviation of the active torque from an arbitrary positive nominal value and the tracking error of the generator torque. We show that the turbine system is input‐to‐state stable for the one‐mass model and integral input‐to‐state stable for the two‐mass model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we propose a simple, continuous, and distributed controller for the second‐order multiagent system to achieve leader‐following trajectory tracking, by exploiting the control input information of neighbors (CIIN) and using proportional‐derivative (PD) control in terms of local neighborhood synchronization error. A constant time delay is introduced in the CIIN as a design parameter to avoid the algebraic loop issue arising from the control input coupling. We develop an easily testable condition on the PD gains to ensure that the resulting neutral‐type error system is input‐to‐state stable for an arbitrary bounded delay, and prove that when the leader's acceleration is a Lipschitz continuous function with respect to time, the ultimate bound of tracking errors is strictly increasing with respect to the introduced time delay. Moreover, we analyze the robustness of the controller with respect to model uncertainties and show its potential advantages over two existing controllers in balancing the steady‐state tracking precision, the communication cost, and the continuity of controller signal. Finally, extensive simulations are conducted to show the effect of the delay on system stability, to verify the condition on PD gains, to confirm the robustness of the controller, and to demonstrate the detailed advantages.  相似文献   

11.
在舰炮网络化弹药打击近岸机动目标的末制导段,提出了一种考虑攻击角约束的有限时间分布式模糊协同制导律.构建网络化弹药–目标相对运动模型,设计扩张状态观测器估计目标的切向、法向加速度.在视线切向,为保证命中时刻在有限时间内趋于一致,采用积分滑模设计分布式有限时间协同制导律;在视线法向,为在有限时间内零化视线角误差、视线角速率并改善控制指令终端发散现象,采用非奇异终端滑模设计两阶段制导律.为削弱控制指令抖振、补偿干扰,设计模糊自适应系统,并通过Lyapunov理论证明了全系统状态的一致最终有界性与有限时间收敛性.仿真实验表明:该制导律使网络化弹药在打击机动形式不同的目标时,均具备较好的协同制导性能.  相似文献   

12.
13.
In this paper, a design problem of low dimensional disturbance observer‐based control (DOBC) is considered for a class of nonlinear parabolic partial differential equation (PDE) systems with the spatio‐temporal disturbance modeled by an infinite dimensional exosystem of parabolic PDE. Motivated by the fact that the dominant structure of the parabolic PDE is usually characterized by a finite number of degrees of freedom, the modal decomposition method is initially applied to both the PDE system and the PDE exosystem to derive a low dimensional slow system and a low dimensional slow exosystem, which accurately capture the dominant dynamics of the PDE system and the PDE exosystem, respectively. Then, the definition of input‐to‐state stability for the PDE system with the spatio‐temporal disturbance is given to formulate the design objective. Subsequently, based on the derived slow system and slow exosystem, a low dimensional disturbance observer (DO) is constructed to estimate the state of the slow exosystem, and then a low dimensional DOBC is given to compensate the effect of the slow exosystem in order to reject approximately the spatio‐temporal disturbance. Then, a design method of low dimensional DOBC is developed in terms of linear matrix inequality to guarantee that not only the closed‐loop slow system is exponentially stable in the presence of the slow exosystem but also the closed‐loop PDE system is input‐to‐state stable in the presence of the spatio‐temporal disturbance. Finally, simulation results on the control of temperature profile for catalytic rod demonstrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The concept of input‐to‐state stability (ISS) is important in robust control, as the state of an ISS system subject to disturbances can be stably regulated to a small region around the origin. In this study, the ISS property of the rigid‐body attitude system with quaternion representation is thoroughly investigated. It has been known that the closed loop with continuous controllers is not ISS with respect to arbitrarily small external disturbances. To deal with this problem, hybrid proportional‐derivative controllers with hysteresis are proposed to render the attitude system ISS. The controller is far from new, but it is investigated in a new aspect. To illustrate the applications of the results about ISS, 2 new robust hybrid controllers are designed. In the case of large bounded time‐varying disturbances, the hybrid proportional‐derivative controller is designed to incorporate a saturated high‐gain feedback term, and arbitrarily small ultimate bounds of the state can be obtained; in the case of constant disturbances, a hybrid adaptive controller is proposed, which is robust against small estimate error of inertia matrix. Finally, simulations are conducted to illustrate the effectiveness of the proposed control strategies.  相似文献   

15.
This paper addresses the design of low‐level controllers for leader–follower formations of nonholonomic vehicles in the presence of bounded measurement delays. The concept of input‐to‐state stability is extended to encompass the effect of bounded delays and restrictions on the input. A method is proposed to integrate a Smith predictor in a backstepping design on the basis of nested saturations and nonlinear small‐gain assignment, which allows for time delays in the feedback loop. Robustness analysis under uncertain bounded time delays is provided, and design tradeoffs resulting from the use of bounded controls are discussed. Illustrative simulations are shown to validate the design and robustness analysis in the context of a simple leader–follower trailing control problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper addresses the problem of controlling a linear system subject to actuator saturations and to ??2‐bounded disturbances. Linear matrix inequality (LMI) conditions are proposed to design a state feedback gain in order to satisfy the closed‐loop input‐to‐state stability (ISS) and the closed‐loop finite gain ??2 stability. By considering a quadratic candidate Lyapunov function, two particular tools are used to derive the LMI conditions: a modified sector condition, which encompasses the classical sector‐nonlinearity condition considered in some previous works, and Finsler's Lemma, which allows to derive stabilization conditions which are adapted to treat multiple objective control optimization problems in a potentially less conservative framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A novel compact wideband filter using three‐mode dual‐ring resonator is presented in this article. The resonator is constructed by two quarter wavelength transmission lines and a cascaded half wavelength dual‐ring. Formulae based on even‐ and odd‐mode analysis are derived to analyze the locations of the transmission poles and zeros of the resonator. Due to the transmission zeros in the lower and upper stopbands, the proposed filter exhibits sharp attenuations near the passband as well as very wide stopband. The filter is successfully realized by full wave EM simulation and fabricated. The measured responses of the filter agree well with the design simulation, and show that the fabricated filter has an insertion loss of better than 1.5 dB in the passband and two rejections of greater than 20 dB in the stopbands from 0 to 10GHz.  相似文献   

18.
In this brief, we extend the existing results on fault tolerant control via virtual actuator approach to a class of systems with Lipschitz nonlinearities to maintain the closed‐loop stability after actuator faults. This generalization is established by relying on the input‐to‐state stability properties of cascaded systems. The virtual actuator block, placed between faulty plant and nominal controller, generates useful input signals for faulty plant by using output signals of the nominal controller to guarantee the closed‐loop stability in the presence of actuator faults. This design problem is reduced to a matrix inequality that can be turned to an LMI by fixing a variable to a constant value and solving the resulting LMI feasibility problem. The proposed fault tolerant control method is successfully evaluated using a nonlinear system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The robustness properties of a first‐order sliding‐mode controller are combined with those of an added linear term in order to obtain a closed loop that shows input‐to‐state stability with respect to matched and unmatched disturbances, of which an upper bound might not be known, using only output information. The output under consideration can have any relative degree. Also, a transformation of the state into a novel output normal form is presented. The zero dynamics are considered unstable and perturbed, so a methodology for defining an observer and a virtual control for it is presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a model predictive control (MPC) algorithm for a class of constrained linear systems with uncertain state‐delays. Based on a novel artificial Lyapunov function, a new stabilizing condition dependent of the upper bound of uncertain state‐delays is presented in an LMI (linear matrix inequality) form. The proposed MPC algorithm is developed by following the fashion of stability‐enforced scheme. The new algorithm is then extended to linear time varying (LTV) systems with multiple uncertain state‐delays. Numerical examples illustrate the effectiveness of the new algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号