首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims to investigate the problem of H output tracking control for a class of switched linear parameter‐varying (LPV) systems. A sufficient condition ensuring the H output tracking performance for a switched LPV system is firstly presented in the format of linear matrix inequalities. Then, a set of parameter and mode‐dependent switching signals are designed, and a family of switched LPV controllers are developed via multiple parameter‐dependent Lyapunov functions to enhance control design flexibility. Even though the H output tracking control problem for each subsystem might be unsolvable, the problem for switched LPV systems is still solved by the designed controllers and the designed switching law. Finally, the effectiveness of the proposed control design scheme is illustrated by its application to an H speed adjustment problem of an aero‐engine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with observer‐based H output tracking control for networked control systems. An observer‐based controller is implemented through a communication network to drive the output of a controlled plant to track the output of a reference model. The inputs of the controlled plant and the observer‐based tracking controller are updated in an asynchronous way because of the effects of network‐induced delays and packet dropouts in the controller‐to‐actuator channel. Taking the asynchronous characteristic into consideration, the resulting closed‐loop system is modeled as a system with two interval time‐varying delays. A Lyapunov–Krasovskii functional, which makes use of information about the lower and upper bounds of the interval time‐varying delays, is constructed to derive a delay‐dependent criterion such that the closed‐loop system has a desired H tracking performance. Notice that a separation principle cannot be used to design an observer gain and a control gain due to the asynchronous inputs of the plant and the controller. Instead, a novel design algorithm is proposed by applying a particle swarm optimization technique with the feasibility of the stability criterion to search for the minimum H tracking performance and the corresponding gains. The effectiveness of the proposed method is illustrated by an example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the novel approaches of designing robust fuzzy static output feedback H controller for a class of nonlinear singularly perturbed systems. Specifically, the considered system is approximated by a fuzzy singularly perturbed model. With the use of linear matrix inequality (LMI) methods, two methods are provided to design fuzzy static output feedback H controllers. The resulted controllers can guarantee that the closed‐loop systems are asymptotically stable and satisfy H performances for sufficiently small ?. In contrast to the existing results, the proposed approaches have two advantages: (i) the gains of controller are solved directly by a set of ?‐independent LMIs, and therefore, the problem of selecting the initial values in iterative LMIs algorithm can be avoided, and (ii) the smaller control input efforts are needed. The given methods are easy to implement and can be applied to both standard and nonstandard nonlinear singularly perturbed systems. Two numerical examples are provided to illustrate the effectiveness of the developed methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the stability and L2‐gain problems for a class of continuous‐time linear switched systems with the existed asynchronous behaviors, where ‘asynchronous’ means that the switching of the controllers to be designed has a lag to the switching of the system modes. Firstly, a new sufficient condition on the asymptotic stability and weighted L2‐gain analysis is obtained by using multiple Lyapunov functions combined with the average dwell time technique. Moreover, a result that is formulated in form of linear matrix inequalities is derived for the problem of asynchronous H control. Based on the result, the mode‐dependent controllers can be designed. Finally, an illustrative numerical example is presented to show the effectiveness of the obtained results.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the problem of finite‐time H control is addressed for a class of discrete‐time switched nonlinear systems with time delay. The concept of H finite‐time boundedness is first introduced for discrete‐time switched delay systems. Next, a set of switching signals are designed by using the average dwell time approach, under which some delay‐dependent sufficient conditions are derived to guarantee the H finite‐time boundedness of the closed‐loop system. Then, a finite‐time H state feedback controller is also designed by solving such conditions. Furthermore, the problem of uniform finite‐time H stabilization is also resolved. All the conditions are cast into linear matrix inequalities, which can be easily checked by using recently developed algorithms for solving linear matrix inequalities. A numerical example and a water‐quality control system are provided to demonstrate the effectiveness of the main results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the problem of designing a nonlinear H output feedback controller for a class of polynomial discrete‐time systems. In general, this problem is hard to be formulated in a convex form because the relation between the control input and the Lyapunov function is always not jointly convex. Therefore, the problem cannot be solved via semidefinite programming (SDP). On the basis of the sum of squares (SOS) approach and incorporation of an integrator into the controller, sufficient conditions for the existence of a nonlinear H output feedback controller are given in terms of SOS conditions, which can be solved by an SDP solver. In contrast to the existing methods, a less conservative result is obtained. Finally, numerical examples are used to demonstrate the validity of this integrator approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of infinite‐horizon H state‐feedback tracking control for linear continuous time‐invariant retarded systems with stochastic parameter uncertainties is investigated. Two tracking patterns are considered depending on the nature of the reference signal; that is, whether it is measured online or previewed in a fixed time‐interval ahead. The stochastic uncertainties appear in the dynamics matrices for both the retarded and the non‐retarded states of the system. The delayed system is transformed via the input–output approach, to an uncertain norm‐bounded system. A new method that efficiently yields a min–max strategy to the solution of each of the aforementioned two cases is suggested where, given a specific reference signal, the controller plays against nature, which chooses the maximizing energy‐bounded disturbance. The theoretical results are demonstrated by two examples that show the impact of the delay length and the preview length on the system performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers the problem of observer‐based H controller design for a class of discrete‐time nonhomogeneous Markov jump systems with nonlinear input. Actuator saturation is considered to be a nonlinear input of such system and the time‐varying transition probability matrix in the system is described as a polytope set. Furthermore, a mode‐dependent and parameter‐dependent Lyapunov function is investigated, and a sufficient condition is derived to design observer‐based controllers such that the resulting error dynamical system is stochastically stable and a prescribed H performance is achieved. Finally, estimation of attraction domain of such nonhomogeneous Markov jump systems is also made. A simulation example shows the effectiveness of developed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper studies practical output tracking of switched nonlinear systems in p-normal form. No solvability of the practical output tracking problem for subsystems is required. A constructive scheme to solve the problem for a switched nonlinear system is set up by exploiting the single Lyapunov function method and the tool of adding a power integrator. Also, we design a proper switching law and construct state-feedback controllers of subsystems. A two inverted pendulums as a practical example, which cannot be handled by the existing approaches, illustrates our theoretical result.  相似文献   

10.
This paper is concerned with the decentralized H controller synthesis problem for discrete‐time LTI systems. Despite of intensive research efforts over the last several decades, this problem is believed to be nonconvex and still outstanding in general. Therefore, most of existing approaches resort to heuristic optimization algorithms that do not allow us to draw any definite conclusion on the quality of the designed controllers. To get around this difficulty, in this paper, we propose convex optimization procedures for computing lower bounds of the H performance that is achievable via decentralized LTI controllers of any order. In particular, we will show that sharpened lower bounds can be obtained by making good use of structures of the LTI plant typically observed in the decentralized control setting. We illustrate via numerical examples that these lower bounds are indeed useful to ensure the good quality of decentralized controllers designed by a heuristic optimization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the problem of delay‐dependent exponential H filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with the H filtering problem for two‐dimensional T‐S fuzzy systems. Sufficient conditions for the solvability of this problem are obtained by using basis‐dependent Lyapunov functions. By considering the measured output as an independent variable with respect to the state variable and the disturbance input, a new method for designing two‐dimensional H filters is presented. Moreover, it has been shown that the proposed method is equivalent to the conventional one. Therefore, the proposed method does not lead to any conservativeness that may be caused by separately considering the measured output, the state variable, and the disturbance input. In converting the parameterized linear matrix inequalities (PLMI) into LMI constraints, attention is focused on the reduction of the number of LMI‐based conditions. On the basis of the proposed theorem, the number of LMI‐based conditions is reduced to r3 from r3(r + 1)2 ∕ 4 by the conventional method. Thus, the computational advantage is obvious for fuzzy systems with large number of fuzzy rules. Simulation results have demonstrated the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the problem of H output tracking control for networked control systems (NCSs) with network‐induced delay and packet disordering. Different from the results in existing literature, the controller design in this paper is both delay‐ and packet‐disordering‐dependent. Based on the different cases of consecutive predictions, the networked output tracking system is modeled into a switched system. Moreover, by the corresponding switching‐based Lyapunov functional approach, a linear matrix inequality (LMI)‐based procedure is proposed for designing state‐feedback controllers, which guarantees that the output of the closed‐loop NCSs tracks the output of a given reference model well in the H sense. In addition, the proposed method can be applied variously due to all kinds of prediction numbers of the consecutive disordering packet have been considered, and the designed controller is based on the prediction case in the last transmission interval, which brings about less conservatism. Finally numerical examples and simulations are used to illustrate the effectiveness and validity of the proposed switching‐based method and the delay‐ and packet‐disordering‐dependent H output tracking controller design.  相似文献   

14.
This paper presents a new method to construct a decentralized nonlinear robust H controller for a class of large‐scale nonlinear uncertain systems. The admissible uncertainties and nonlinearities in the system satisfy integral quadratic constraints and global Lipschitz conditions, respectively. The decentralized controller, which is required to be stable, is capable of exploiting known nonlinearities and interconnections between subsystems without treating them as uncertainties. Instead, additional uncertainties are introduced because of the discrepancies between nondecentralized and decentralized nonlinear output feedback controllers. The H control objective is to achieve an absolutely stable closed‐loop system with a specified disturbance attenuation level. A solution to this control problem involves stabilizing solutions to algebraic Riccati equations parametrized by scaling constants corresponding to the uncertainties and nonlinearities. This formulation is nonconvex; hence, an evolutionary optimization method is applied to solve the control problem considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
李莉莉  邵诚 《控制与决策》2012,27(2):304-307
针对一类Lipschitz非线性切换系统,研究基于观测器的H∞输出跟踪控制问题.借助微分中值定理,将Lipschitz非线性切换系统转化为线性参数切换系统.当状态变量不可测或不易测时,利用多Lyapunov函数方法,同时设计观测器、基于观测器的跟踪控制器和滞后切换信号,使得系统满足H∞输出跟踪性能.最后通过仿真例子表明了设计方法的有效性.  相似文献   

16.
17.
This paper addresses the finite horizon H control problem for a class of discrete‐time nonlinear Markov jump systems with multiplicative noise and nonlinear feedback device. The system nonlinearity occurs in a random way specified by a Bernoulli process, whereas the actuator and sensor nonlinearities are restricted to a sector region. Both the state and the dynamic output feedback H controllers are devised in terms of difference LMIs. The proposed approach not only allows the resulting system to achieve a prescribed disturbance attenuation level, but also enables the output of actuator/sensor to meet the designated sector condition. Moreover, it is also shown that our approach is well‐adapted for dealing with the discrete‐time Markov jump systems with saturated actuator and sensor. Finally, a backward iterative algorithm is provided to solve the obtained difference LMIs and a numerical example is presented to verify the efficiency of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with network‐based H stabilization for stochastic systems, where network‐induced delays, packet dropouts, and packet disorders are taken into account simultaneously. The packet disorders arising from both the sampler‐to‐controller channel and the controller‐to‐actuator channel are considered by introducing a logic controller and a logic zero‐order hold. The network‐induced delays and packet dropouts are modeled as a constant delay plus a non‐differentiable time‐varying delay in the input. By employing Lyapunov–Krasovskii functional approach, we establish results that parallel well‐known bounded real Lemmas. More specifically, these results provide conditions to bound the H level of the system, which means the worst case energy of the output of the system when subjected to a unitary norm deterministic disturbance signal. On the basis of these results, suitable network‐based H controllers are designed by using cone complementary linearization method. An air vehicle system is finally taken as an example to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the distributed H robust control problem synthesized with transient performance is investigated for a group of autonomous agents governed by uncertain general linear node dynamics. Based on the relative information between neighboring agents and some information of other agents, distributed state‐feedback and observer‐type output‐feedback control protocols are designed and analyzed, respectively. By using tools from robust control theory, conditions for the existence of controllers for solving such a problem are established. It is shown that the problem of distributed H robust control synthesized with transient performance can be converted to the H control problem synthesized with transient performance for decoupled linear systems of the same low dimensions. Finally, simulation examples are provided to illustrate the effectiveness of the design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号