首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
4.
We previously identified ZNF74 as a developmentally expressed gene commonly deleted in DiGeorge syndrome. ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix and belongs to a large subfamily of Cys2-His2 zinc finger proteins containing a KRAB (Kruppel-associated box) repressor motif. We now report on the multifunctionality of the zinc finger domain of ZNF74. This nucleic acid binding domain is shown here to function as a nuclear matrix targeting sequence and to be involved in protein-protein interaction. By far-Western analysis and coimmunoprecipitation studies, we demonstrate that ZNF74 interacts, via its zinc finger domain, with the hyperphosphorylated largest subunit of RNA polymerase II (pol IIo) but not with the hypophosphorylated form. The importance of the phosphorylation in this interaction is supported by the observation that phosphatase treatment inhibits ZNF74 binding. Double immunofluorescence experiments indicate that ZNF74 colocalizes with the pol IIo and the SC35 splicing factor in irregularly shaped subnuclear domains. Thus, ZNF74 sublocalization in nuclear domains enriched in pre-mRNA maturating factors, its RNA binding activity, and its direct phosphodependent interaction with the pol IIo, a form of the RNA polymerase functionally associated with pre- mRNA processing, suggest a role for this member of the KRAB multifinger protein family in RNA processing.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号