首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
路浩 《焊接学报》2015,36(6):69-72
针对铝合金三元气体保护焊力学性能提升原因分析的需求,使用测温系统采集铝合金纯氩气体保护、三元气体保护焊接的热循环曲线,分析焊接温度场特征的差异. 研究发现三元气体保护焊温度场更加集中,峰值温度更高,降温速率更快. 对纯氩气体保护、三元气体保护焊接头进行染色法观察发现,三元气体保护堆焊时晶粒更大,气孔率更低;对接焊时,三元气体保护焊接头的半熔化区存在晶界液化现象,三元气体保护焊的晶界液化现象更加严重,半熔化区宽度更窄. 结果表明,焊接温度场是引起焊接接头力学性能提升的根本原因.  相似文献   

2.
In order to clarify the nitrogen absorption mechanism in gas tungsten arc welding, the measurement of the weld metal nitrogen content under nitrogen mixture shielding gases, and the numerical analysis of plasma heat source characteristics in nitrogen dissociation phenomenon were conducted. The nitrogen content of weld metal produced by He arc reduces to approximately a half relative to that by Ar arc in the shielding gas condition of less than about 1% mixture ratio. Additionally, it is assumed that a decline in the plasma temperature in the vicinity of the molten pools due to the generation of metal vapour, accompanied by a reduction in atom-like nitrogen content, cause intense impact on the reduction mechanism of weld metal nitrogen content in a He arc.  相似文献   

3.
采用不同保护气体对440 MPa级低合金高强钢(HSLA钢)进行气保焊焊接,通过光学显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)和电子背散射衍射技术(EBSD)对焊缝微观组织及夹杂物形貌进行了观察,研究了保护气体组成对焊缝组织及韧性的影响,并分析了不同成分保护气体对焊缝夹杂物大小、数量及其成分的影响.结果表明,保护气体为100% CO2,焊缝金属韧性较差;保护气体(体积分数)为80% Ar+20% CO2和90% Ar+ 10% CO2,焊缝金属韧性较好.100% CO2气体保护焊焊缝组织主要为铁素体和贝氏体,混合气体保护焊(20% CO2和10% CO2)焊缝组织主要为针状铁素体和少量侧板条铁素体.随着保护气体中CO2含量的减少,焊缝金属中夹杂物数量、尺寸均降低,且成分发生变化.对于440 MPa级HSLA钢,合理的保护气体组成可以得到良好的焊接质量.  相似文献   

4.
研究了气体保护焊时氮含量对气孔及力学性能的影响,试验结果表明:采用实心焊丝和ψ(Ar)20%ψ(C02)80%组合时,随着环境中氮含量的增加最容易产生气孔.因此,必须把保护气体中氮的含量控制在1%以下.采用药芯焊丝和C02组合时,耐气孔性良好,但是,随着氮含量的增加冲击吸收功下降.因此,应把熔敷金属中氮的含量限制在0.01%以内.  相似文献   

5.
在10Ni5CrMoV高强结构钢焊接中,为了获得良好的强韧性匹配,焊后需要进行热处理来改善焊缝金属的组织和性能.试验采用富氩气体保护焊焊接10Ni5CrMoV钢,分析了不同调质热处理工艺下焊缝组织、性能的变化规律.结果表明,焊缝金属焊态的组织主要是贝氏体、少量马氏体和残余奥氏体组织,调质热处理后焊缝组织主要为回火马氏体,随着回火温度的升高,焊缝中残余奥氏体减少,马氏体中碳化物析出长大并有球化趋势.调质态焊缝金属的强度随着回火温度的升高而逐渐降低,而韧性随着回火温度的升高而显著提高.  相似文献   

6.
Abstract

There is an ever increasing range of shielding gases, which vary from the pure gases to complex mixtures based on argon, helium, oxygen, and carbon dioxide. The commercially available gas mixtures should be considered in terms of their suitability for ensuring arc and metal transfer stability, performance, and weld quality. The objective of the present paper is to study the toughness of Al5083–O aluminium alloy, to evaluate the variation of welding zone toughness as a function of the shielding gas composition and the testing temperature. To achieve these objectives, gas metal arc welding was performed with four different shielding gas compositions (100%Ar?0%He, 67%Ar+33%He, 50%Ar?50%He, and 33%Ar+67%He), and tests were carried out at four different temperatures, namely,+25°C (+77°F), ?30°C (?22°F), ?85°C (?121°F), and ?196°C (?321°F). The welding zone was divided into four subzones for analysis, namely, weld metal, fusion line, heat affected zone, and base metal according to the notch position. Tensile and yield strengths did not show a great effect of testing temperature at +25°C to ?85°C, but increased greatly at ?196°C. Also, strain tended to increase as test temperature decreased. Shielding gas composition does not have a great influence on mechanical properties. The size and number of defects were least in the 33%Ar?67%He mixture. This shows that the higher the helium gas content, the lower the number of defects detected via radiographic inspection. In the impact test, the maximum load was lowest in the weld metal and highest in the base metal at room temperature, and the maximum load and displacement were higher and lower respectively at ?196°C than those at other test temperatures, showing that the lower the test temperature, the higher the maximum load, without any special features related to the phase composition being observed in the load–deflection response. The absorbed energy of the weld metal notched specimens did not depend significantly on test temperature and shielding gas mixture. Conversely, the other specimens showed that as temperature was decreased, absorption energy increased slightly up to a maximum at ?85°C, but then decreased markedly at ?196°C.  相似文献   

7.
Molten metal flow on weld pool surface in gas metal arc welding process is investigated using a vision-based sensing system and an interpolation algorithm. Bead formation is investigated by analysing flow patterns and its driving forces of weld pool under different welding speed, welding current and shielding gas. Results show that if longitudinal to transverse velocity ratio exceeds 2.0 in the front of weld pool, outward molten metal mainly driven by arc force cannot reach the widest section of the weld pool. Meanwhile, the transverse spreading of molten metal is still hindered in the middle of weld pool as it turns to be inward flow dominated by Marangoni force. These phenomena impede molten metal supply to weld toes which causes undercutting defect. Scaling analysis shows that the predicted undercutting defect agrees well with that resulted from experiments.  相似文献   

8.
Abstract

The effects of shielding gas composition on the properties and microstructure of single pass weld metals produced by GMA (gas metal arc) groove welding of 950 MPa class steel plates have been investigated. The shielding gas employed was a mixture of argon (Ar) and carbon dioxide (CO2) (0–25%), and the weld heat input was ~3 kJ mm. With increasing CO2 content, the hardness of the weld metal decreased from 380 HV to 280 HV, and the absorbed energy of the Charpy impact test decreased from 130 J to 90 J. The microstructures of the weld metal, consisting primarily of low carbon martensite and carbide free bainite, became more bainitic as the CO2 content of the shielding gas was increased. It was also found that the MA constituent, embrittling microstructure, was formed in the granular bainitic area, the volume fraction of which increased with the CO2 content of the shielding gas.  相似文献   

9.
Abstract

In welding of high nitrogen steel (HNS), it is essential to control the nitrogen content and porosity in the weld metal. In this paper, the influence of shielding gas composition and heat input on the nitrogen content and porosity in the weld metal of HNS was investigated by gas tungsten arc welding. The experimental results indicate that the weld nitrogen content increases as N2 in the shielding gas is increased in the same heat input of welding. The weld nitrogen content decreases with increasing the heat input for pure argon used as a shielding gas, whereas it increases with increasing the heat input for the shielding gas including some nitrogen. The nitrogen pore can be avoided when the nitrogen content in the shielding gas is <4% in the heat input range of 528–2340 J mm–1.  相似文献   

10.
11.
超级双相不锈钢多层多道焊接接头组织及腐蚀性能   总被引:4,自引:4,他引:0       下载免费PDF全文
选用2507超级双相不锈钢作为研究对象,研究钨极氩弧焊多层多道焊接接头的组织和腐蚀性能.采用两种不同保护气进行钨极氩弧焊,主要讨论焊接道次和氮气添加对组织和腐蚀性能的影响.结果表明,焊缝中心均有较高的奥氏体含量,其腐蚀速率是焊根部位的0.68倍;盖面和焊根奥氏体含量相近,但盖面由于其弥散且尺寸相对较大的晶内奥氏体表现出更好的耐腐蚀性,焊根是焊缝金属的薄弱区域.混合区由于热影响区的存在腐蚀速率最快.保护气中氮气的添加促进了奥氏体的生成,降低了腐蚀电流密度一个数量级,提高了整体的腐蚀性能.  相似文献   

12.
Gas metal arc welding (GMAW) under pure argon shielding gas atmosphere (pure argon-GMAW) is suitable to obtain a high-strength and high toughness welded joint. However, it is difficult that pure argon-GMA welding is applied practically welding structure because of arc instability. In order to perform stable pure argon-GMA welding, duplex current feeding GMAW (DCF-GMAW) has been developed. The DCF-GMAW consists of primary GMA welding current and secondary welding current by constant-current power resource. DFC-GMAW can feed larger current near wire tip. This effect makes that weld penetration depth is deeper, weld bead shape is improved using DCF-GMAW.  相似文献   

13.
Abstract

As part of an ongoing process to fully evaluate the effects of an alternating shielding gas supply on gas shielded welding processes, a comparison between the arc pressures generated using argon, helium, alternating shielding gases and pulsed gas tungsten arc welding (GTAW) has been conducted. Arc pressure variation and peaking are two of the fundamental phenomena produced during the alternating shielding gas process and are said to help create a stirring action within the liquid weld metal. However, there are no published data on arc pressure measurements during an alternating shielding gas supply, and consequently, these phenomena are based solely on theoretical assumptions. The experimental measurements made have shown that alternating shielding gases produce considerably higher arc pressures than argon, helium and pulsed GTAW due to a surge at weld initiation. The transient arc pressure measurements made when using alternating shielding gases are also considerably different from the theoretical assumptions previously reported.  相似文献   

14.
高强度铝合金厚板焊接气孔形态分析及混合保护气体效应   总被引:1,自引:0,他引:1  
进行了高强度铝合金的混合气体保护气焊接试验,对采用MIG焊接高强度铝合金厚板时产生的气孔形貌及其机理进行分析,研究了影响气孔产生倾向的因素。试验结果表明,采用50%He 50%Ar保护气体施焊,能明显减少气孔产生,减小HAZ宽度,使软化区宽度相应减小,焊接接头力学性能有所提高。  相似文献   

15.
采用CO2气体保护焊选择ER55-G焊丝焊接了超细晶Q460钢,研究了焊接接头显微组织、断口形貌以及力学性能。结果表明,焊缝主要由铁素体和少量珠光体构成,焊缝中大量针状铁素体的生成有利于提高焊缝金属的强度和韧性。焊接接头热影响区粗晶区为贝氏体组织,相变重结晶区和不完全重结晶区未出现软化现象。焊缝金属同热影响区冲击断口均为韧窝状韧性断裂,由于超细晶Q460钢材质的高度纯净化以及焊接过程中较小线能量的选择,焊接接头热影响区表现出优异的冲击韧性。  相似文献   

16.
杜宝帅  张忠文  李新梅  邹勇 《电焊机》2011,41(12):39-43
采用焊条电孤焊、CO2气体保护焊焊接了控扎控冷制备输电铁塔用细晶Q420低合金高强钢.研究焊接接头显微组织和力学性能,并对比分析热轧制备Q420钢焊接接头的冲击韧性.研究结果表明,选择E5515焊条、ER55-G焊丝焊接所得细晶Q420高强钢焊接接头焊缝金属主要由铁素体和少量珠光体构成,ER55-G焊丝由于添加Ti元素...  相似文献   

17.
以UNS S32750超级双相不锈钢为研究对象,采用冷金属过渡脉冲(cold metal transfer pulse,CMT-P)复合电弧焊接技术,运用光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪和电子探针组织表征手段以及显微硬度和低温冲击韧性性能测试方法,对比研究了纯Ar和Ar+2%N2气体保护对焊接接头的微观组织、硬度和低温韧性的影响规律.结果表明,与纯Ar保护气相比,添加2%N2保护的焊接过程飞溅较少,焊缝平整笔直,鱼鳞纹更加细致紧密.此外,热影响区主要由过量的铁素体和少量的奥氏体组成,并伴随有害的Cr2N析出.因此,与CMT-P复合电弧焊接头的其它区域相比,热影响区的硬度较高和韧性较低.添加2%N2气体保护增加了焊缝和热影响区奥氏体含量和N原子在铁素体与奥氏体内的固溶量,从而提高了接头各区域的低温韧性.  相似文献   

18.
通过调节保护气体中CO2的含量,研究了保护气体氧化性对高强钢焊缝金属低温韧性的影响规律,同时分析了这种影响规律的作用过程。试验结果表明,随着保护气体中CO2含量增加,粒状贝氏体组织在焊缝金属中含量增加,焊缝金属低温韧性降低;当保护气体中CO2含量较少时,焊缝金属组织以针状铁素体为主,焊缝金属具有较高的韧性水平。  相似文献   

19.
刘晓玲 《焊接》2022,(3):35-40
为提升液压支架修复的可靠性和经济性,对超声等离子焊接的应用效果进行了数值模拟和试验研究。根据所设计超声等离子弧焊系统的焊枪结构与焊接工艺参数建立了超声场有限元模型,基于COMSOL求解等离子气体的速度场、电弧密度场和声压场。对修复后的液压支架试样进行了显微硬度、残余应力及冲击韧性等力学性能测试。结果表明,超声波可在同等条件下将电弧压力提升20%以上,并在4 mm电弧直径内显著增强电流密度,有效减小热影响区范围和残余应力;等离子气体流速与电弧密度在靠近支架焊缝区域以近似相反的变化趋势分布,二阶特征频率振源能够在电极附近产生驻波;修复后支架的平均硬度和室温冲击吸收能量相比母材分别提升了44.6%和45.8%。  相似文献   

20.
This paper deals with a novel dual shield TIG welding method named gas pool coupled activating TIG( GPCA-TIG)welding. The welding method divides the shielding gas into two layers. Inert gas such as Ar is adopted as the inner layer gas to protect the tungsten electrode and the molten pool metal. Pure O_2,N_2 or mixture of them are used as the outer layer gas to increase the weld penetration and improve the low temperature toughness of weld metal. Through analyzing the interaction between outer gas and arc and the distributions and existing forms of oxygen and nitrogen elements,the transfer behaviors of nitrogen and oxygen from arc to pool were investigated. The results show that,the interaction between the outer gas and arc plasma makes the arc slightly constrict. The incoming oxygen enriches on the molten pool surface and exists in the form of iron oxide,chromium oxide,manganese oxide and silicon oxygen compounds. The incoming nitrogen evenly distributes in the molten pool and exists in the form of nitrogen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号