首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
压水堆核电厂发生严重事故期间,从主系统释放的蒸汽、氢气以及下封头失效后进入安全壳的堆芯熔融物均对安全壳的完整性构成威胁。以国内典型二代加压水堆为研究对象,采用MAAP程序进行安全壳响应分析。选取了两种典型的严重事故序列:热管段中破口叠加设备冷却水失效和再循环高压安注失效,堆芯因冷却不足升温熔化导致压力容器失效,熔融物与混凝土发生反应(MCCI),安全壳超压失效;冷管段大破口叠加再循环失效,安全壳内蒸汽不断聚集,发生超压失效。通过对两种事故工况的分析,证实了再循环高压安注、安全壳喷淋这两种缓解措施对保证安全壳完整性的重要作用。  相似文献   

2.
In the frame of the LACOMECO (large scale experiments on core degradation, melt retention and containment behavior) project of the 7th European Framework Program, a test in the DISCO (dispersion of corium) facility was performed in order to analyze the phenomena which occur during an ex-vessel fuel–coolant interaction (FCI). The test is focused on the premixing phase of the FCI with no trigger used for explosion phase. The objectives of the test were to provide data concerning the dispersion of water and melt out of the pit, characterization of the debris and pressurization of the reactor compartments for scenarios, where the melt is ejected from the reactor pressure vessel (RPV) under pressure. The experiment was performed for a reactor pit geometry close to a French 900 MWe reactor configuration at a scale of 1:10. The corium melt was simulated by a melt of iron–alumina with a temperature of 2400 K. A containment pressure increase of 0.04 MPa was measured, the total pressure reached about 0.24 MPa. No spontaneous steam explosion was observed. About 16% of the initial melt (11.62 kg) remained in the RPV vessel, 60% remained in the cavity mainly as a compact crust. The fraction of the melt transported out of the pit was about 24%.  相似文献   

3.
堆芯熔化严重事故下保证反应堆压力容器(RPV)完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。在进行严重事故堆芯熔化物堆内包容(IVR)下RPV结构完整性分析中,RPV内外壁和沿高度方向的温度分布以及剩余壁厚是结构分析的重要输入。本文采用CFD分析方法对RPV堆内熔融物、RPV壁以及外部气液两相流动换热进行热-固-流耦合分析,获得耦合情况下的温度场、流场、各相份额分布以及RPV的剩余壁厚,为RPV在严重事故IVR下的结构完整性分析提供依据。  相似文献   

4.
The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P’4, the VVER-1000 and the German Konvoi plant. A high-temperature iron–alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified.The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.  相似文献   

5.
严重事故缓解策略熔融物堆内滞留(IVR)有效性评价方法中,关于压力容器下封头内的熔池结构是最具争议的问题。本工作对目前国际上采用的稳定熔池2层和3层结构,以及在熔池形成过程中可能形成的4层结构进行了比较研究,建立了这3种结构下的熔池分层传热模型,并分析了3种结构在不同反应堆功率水平下对压力容器有效性的影响。结果表明,压力容器安全裕量随反应堆功率的升高而减小,在4层熔池结构下发生压力容器熔穿失效的可能性最大。  相似文献   

6.
After a reactor core melt accident, creep failure may occur in the residual solid wall of the reactor pressure vessel (RPV) under the influence of high temperature difference, internal pressure and the weight of the molten pool. In this work, the CPR1000 RPV was used as a research object. The ablation temperature field of the lower head of RPV was solved through the secondary development of the FLUENT software. And then, a CFD-FEM coupling analysis was carried out based on ANSYS Workbench software. The equivalent stress, the equivalent plastic strain and the equivalent creep strain of the RPV within 72 h under severe accident after the wall ablation and temperature field distribution formed stably were calculated. The risk of creep failure of the RPV was evaluated. The results show that when the reactor pit water injection measure puts into operation, the residual solid wall of the RPV will not experience creep failure and plastic deformation failure within 72 h, and besides, the pressure relief can significantly increase the safety margin of the structural integrity of the RPV.  相似文献   

7.
核电站严重事故发生后,反应堆压力容器(RPV)的剩余固壁在高温差、内压、熔池重量等的作用下可能发生蠕变失效。本文以CPR1000 RPV为研究对象,基于FLUENT软件二次开发求解反应堆压力容器下封头烧蚀温度场,然后基于ANSYS Workbench开展耦合CFD-FEM力学分析,求解严重事故下RPV烧蚀温度场稳定后72 h内的等效应力、等效塑性应变和等效蠕变应变,并评估了RPV的蠕变失效风险。结果表明:当堆坑注水等措施投运后,RPV剩余固壁在72 h内不会发生蠕变失效和塑性变形失效,有效卸压可明显提升RPV结构完整性的安全裕度。  相似文献   

8.
This paper presents methods to compute J-integral values for cracks in two- and three-dimensional thermo-mechanical loaded structures using the finite element code ANSYS. The developed methods are used to evaluate the behavior of a crack on the outside of an emergency cooled reactor pressure vessel (RPV) during a severe core melt down accident. It will be shown, that water cooling of the outer surface of a RPV during a core melt down accident can prevent vessel failure due to creep and ductile rupture. Further on, we present J-integral values for an assumed crack at the outside of the lower plenum of the RPV, at its most stressed location for an emergency cooling (thermal shock) scenario.  相似文献   

9.
Purdue 1/10 scale direct containment heating separate effects experiments under a reactor vessel pressure up to 14.2 MPa are presented. With the test facility scaled to the Zion PWR geometry, these tests are mainly focused on the corium dispersion phenomenon in order to obtain a better understanding of the dominant driving mechanisms. Water and woods metal have been used separately to simulate the core melt, the reactor vessel being pressurized with nitrogen gas analogous to the steam in the prototypic case. The entire test transient lasted for a few seconds, and the liquid dispersion in the test cavity occurred within only 0.5 s. To synchronize the data acquisition and blowdown transient, the test initiation was triggered by breaking two rupture discs in the liquid/gas delivery system. Parameters characterizing the liquid transport were obtained via various instruments. Important information about the mean size and size distribution of the dispersed droplets in the test cavity, the liquid film flow transient, the subcompartment trapping, and the liquid carry-over to the containment has been obtained. These results, along with data from a previous low pressure (1.4 MPa) experiment carried out at Purdue University, form a solid database for further theoretical analysis.  相似文献   

10.
熔融物堆内滞留条件下压力容器变形   总被引:2,自引:0,他引:2  
熔融物堆内滞留(In-Vessel Retention,IVR)已经成为第三代反应堆一项关键的严重事故缓解策略,而压力容器外部冷却(External Reactor Vessel Cooling,ERVC)技术则是保证IVR得以成功实施的关键。当发生堆芯熔化时,高温熔融物对压力容器(Reactor Pressure Vessel,RPV)下封头的热冲击会导致RPV壁面和由其构成的外部冷却通道的形状发生变化,使局部传热恶化,进而造成IVR的失效。因此,有必要对IVR条件下RPV壁面的变形进行研究。本文利用有限元软件ANSYS对RPV进行了几何建模、温度场分析和力学场分析。结果表明,在RPV外部实现冷却、内部实现泄压的前提下,壁面变形为13.85-18.75 mm。在1 MPa内压的作用下,高温蠕变会使壁面变形随时间增大,但其增量有限。热膨胀是造成壁面变形的主要因素。  相似文献   

11.
Postulating an unlikely core melt down accident for a light water reactor (LWR), the possible failure mode of the reactor pressure vessel (RPV) and its failure time have to be investigated for a determination of the load conditions for subsequent containment analyses. Worldwide several experiments have been performed in this field accompanied with material properties evaluation, theoretical, and numerical work.  相似文献   

12.
The severe accident analysis code SAMPSON is adopted in this work to evaluate its capability of reproducing the complex gap cooling phenomenon. The ALPHA experiment is adopted for validation, where molten aluminum oxide (Al2O3) produced by a thermite reaction is poured into a water filled hemispherical vessel at the ambient pressure of approximately 1.3 MPa. The spreading and cooling of the debris that has relocated into the pressure vessel lower plenum are simulated, including the analysis of the RPV failure. The model included in the code to simulate the water penetration inside the gap is evaluated and improvements are proposed. The importance of the introduction of some mechanistic approach to describe the gap formation and evolution is underlined where the results show its necessity in order to correctly reproduce the experimental trends.  相似文献   

13.
Sensitivity calculation on melt behavior and lower head response at Fukushima Daiichi unit 1 reactor was performed with methods for estimation of leakages and consequences of releases (MELCOR) 2.1 and moving particle semi-implicit (MPS) method. Four sensitivity cases were calculated, considering safety relief valve (SRV) seizure, penetrations and debris porosity. The results indicated that the lower head failed due to creep rupture, not considering penetrations; otherwise it would have failed due to penetration tube rupture and ejection at an earlier time, resulting in part of debris dropping into the cavity of the drywell. The temperature of residual debris in pressure vessel kept low, and the vessel wall did not suffer creep failure up to 15 hours after reactor scram from which moment the water injection became available. Another aspect was that reactor pressure vessel (RPV) depressurization postponed the lower head creep failure time, and the low debris porosity brought forward the penetration rupture time. Either lower head creep failure or penetration rupture and ejection occurred in the central part of the pressure vessel. In MPS calculation, a slice of debris bed together with lower head, including an instrument guide tube, was chosen as the computational domain. Detailed temperature profiles in debris bed, penetration and vessel wall were obtained. The penetration rupture time calculated by MPS was earlier than the MELCOR result, while the vessel wall creep failure time was later.  相似文献   

14.
The severe accident analysis model of the small modular reactor ACP100 is built using MELCOR code, and the core heat removed process through the barrel and wall of reactor pressure vessel (RPV) is analyzed by the cavity injection system (CIS). The collapse behavior of the fuel assemblies is estimated by the fuel rod degradation model, and the failure behavior of the lower core plate is estimated by ANSYS program. The results show that the fuel assemblies in the core center melt and collapse to form the core melting pool, while the structure of the fuel assemblies surrounding the core melting pool remains intact, and the core lower plate supports the core melting pool and un-collapsed fuel assemblies all the time, and no creep rupture phenomenon occurs; the core heat can be removed by CIS and the debris in-vessel retention successfully avoids the formation of molten pool in the lower head.  相似文献   

15.
以模块式小型堆ACP100为分析对象,建立MELCOR程序严重事故分析模型,分析了堆芯衰变热依次经过吊篮、压力容器壁面然后进入堆腔注水系统(CIS)的传热行为。采用燃料棒失效模型评价燃料组件坍塌行为,并通过ANSYS程序蠕变断裂模型评价堆芯下板失效行为。分析结果表明,严重事故后堆芯中心燃料组件坍塌形成堆芯熔融池,堆芯周围燃料组件保持完整结构状态,堆芯下板支撑堆芯熔融池和未坍塌的燃料组件且未发生蠕变断裂失效;CIS冷却压力容器外壁面并导出堆芯衰变热,最终实现熔融物堆芯滞留,避免下封头内形成熔融池。   相似文献   

16.
In a direct containment heating (DCH) accident scenario, the degree of corium dispersion is one of the most significant factors responsible for the reactor containment heating and pressurization. To study the mechanisms of the corium dispersion phenomenon, a DCH separate effect test facility of 1:10 linear scale for Zion PWR geometry is constructed. Experiments are carried out with air-water and air-woods metal simulating steam and molten core materials. The physical process of corium dispersion is studied in detail through various instruments, as well as with flow visualization at several locations. The accident transient begins with the liquid jet discharge at the bottom of the reactor pressure vessel. Once the jet impinges on the cavity bottom floor, it immediately spreads out and moves rapidly to the cavity exit as a film flow. Part of the discharged liquid flows out of the cavity before gas blowdown, and the rest is subjected to the entrainment process due to the high speed gas stream. The liquid film and droplet flows from the reactor cavity will then experience subcompartment trapping and re-entrainment. Consequently, the dispersed liquid droplets that follow the gas stream are transported into the containment atmosphere, resulting in containment heating and pressurization in the prototypic condition. Comprehensive measurements are obtained in this study, including the liquid jet velocity, liquid film thickness and velocity transients in the test cavity, gas velocity and velocity profile in the cavity, droplet size distribution and entrainment rate, and the fraction of dispersed liquid in the containment building. These data are of great importance for better understanding of the corium dispersion mechanisms.  相似文献   

17.
Water columns were adopted in the pressure measurement system of Fukushima-Daiichi Unit 3 to compensate for evaporation/condensation during normal operation. Some of these water columns evaporated partially during the accident condition jeopardizing correct understanding on actual pressure. Through inter-comparison of reactor pressure vessel (RPV) and suppression chamber (S/C) pressures with drywell (D/W) pressure, such water-column-change effect was evaluated. From this evaluation, correction for the specific effect was developed for RPV and S/C pressure data. With this corrected pressure, slight pressure difference among RPV, S/C, and D/W during the accident transient was evaluated. This information of pressure difference was then integrated with other available data, such as water level, containment atmosphere monitoring system, and environmental dose rate in the Fukushima-Daiichi site, into an interpretation of accident progression behavior focusing on RPV and primary containment vessel pressurization/depressurization and radioactive material release to environment. It is suggested that dryout of in-vessel and ex-vessel debris was likely causing pressure decrease on one hand, and S/C water poured into pedestal heated by relocated debris was a likely cause of pressurization on the other hand. Cyclic reflooding of pedestal debris and its dryout was likely leading to the cyclic pressure change lasting several times until the final debris reflooding.  相似文献   

18.
The objective of the development of the code system KESS is simulating the processes of core melting, relocation of core material to the lower head of the reactor pressure vessel (RPV) and its further heatup, modelling of fission product release and coolability of the core material. In the scope of the code development, IKEJET and IKEMIX were designed as key models for the breakup of a molten jet falling into a water pool, cooling of fragments and the formation of particulate debris beds. Calculations were performed with these codes, simulating FARO corium quenching experiments at saturated (L-28) and subcooled (L-31) conditions, as well as PREMIX experiments, e.g. PM-16. With the assumption of a reduced interfacial friction between water and steam as compared to usually applied laws, the melt breakup, energy release from the melt and pressurisation of the vessel observed in the experiments are reproduced with a reasonable accuracy. The model is further applied to reactor conditions, calculating the relocation of a mass of corium of 30 t into the lower plenum, its fragmentation and the formation of a particle bed.  相似文献   

19.
严重事故下为实现堆内熔融物滞留,可采用堆内捕集器(IVCC)的策略。捕集器属压力容器的一部分,属不可更换设备,需长期在堆内受中子辐照。本文通过对典型压水堆压力容器模型和带IVCC的压力容器模型的比较,发现IVCC不会改变压力容器内快中子通量,不会对压力容器的辐照造成影响。且IVCC使得压力容器的热中子通量明显减小,降低了压力容器的整体辐照水平。这说明IVCC对压力容器的辐照性能不会产生不利影响,反而有助于防止压力容器的老化。  相似文献   

20.
Hydrogen uptake can enhance the neutron embrittlement of reactor pressure vessel (RPV) steels. This suggests that irradiation defects act as hydrogen traps. The evidence of hydrogen trapping was investigated using the small-angle neutron scattering (SANS) method on four RPV steels. The samples were examined in the unirradiated and irradiated states and both in the as-received condition and after hydrogen charging. Despite the low bulk content of hydrogen achieved after charging with low current densities, an enrichment of hydrogen in small microstructural defects could be identified. Preferential traps were microstructural defects in the size range of ≈ > 10 nm in the unirradiated and irradiated samples. However, the results do not show any evidence for hydrogen trapping in irradiation defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号