共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
针对传统互信息缺乏利用空间信息而容易导致误配的缺点,提出了基于分块互信息的多模图像配准方法,并运用于可见光与红外图像之间的配准。该方法首先将可见光与红外图像分块,求得每个可见光与红外图像块对的互信息,并由块对中可见光与红外图像的质心间的距离为参数,确定块对的配准系数,求得每个块对的互信息与配准系数的乘积的和,定义为分块互信息,并以此为配准准则。实验表明,该方法运用与可见光与红外光配准,在配准精度上优于传统互信息方法。 相似文献
3.
李作主 《数字社区&智能家居》2007,3(16):1121-1122
本文首先介绍了医学图像配准的基本概念及方法流程;然后介绍了基于遗传算法寻优的图像配准,其适应度函数为两配准图像的互信息;最后通过基于遗传算法的脑部二维图像配准实验说明该算法的高效性. 相似文献
4.
互信息作为图像配准中的相关度矩阵有着广泛的应用,通常采用的是基于Shannon熵的互信息。采用一个广义的信息熵——Renyi熵,提出了一种基于广义互信息的图像配准方法。在全局搜索阶段,采用q取较小值的Renyi熵,此时,Renyi熵可以消除局部极值,再通过局部优化方法对当前的局部最优解进行局部寻优,以找到全局最优解;在局部优化阶段,使用基于q→1时的Renyi熵的归一化互信息测度作为目标函数。实验结果表明:相对于归一化互信息图像配准算法,基于Renyi熵的互信息配准算法有良好的配准效果,且提高了配准速度。 相似文献
5.
6.
7.
针对人脑的二维图像设计了一种遗传算法和最大互信息相结合的医学图像配准算法,采用互信息配准模型,以图像的灰度统计信息为配准依据,用改进的遗传算法搜索图像间的最优变换参数,并用最大互信息作为目标函数指导最优变换参数的搜索。通过实验验证了算法的可行性和稳定性。 相似文献
8.
基于粗配准和互信息的脑部MR图像配准算法 总被引:2,自引:0,他引:2
现有的医学图像配准算法一般都存在需要人工介入、配准时间过长等问题.为了寻找快速、精确、鲁棒性强的自动配准算法,在采用主轴矩方法进行脑部MR(核磁共振)图像的初始配准的基础上,提出局部搜索算法对图像求得更精确的配准.实验表明,该方法的配准精度和现有的Powell算法都可以达到亚像素级,但局部搜索方法和Powell算法相比较,平均配准时间大大缩短;即便和采用了主轴矩粗配准的Powell算法相比较,配准效率也提高了一倍左右.主轴矩粗配准算法提高了配准效率,局部搜索算法则保证了配准的精度. 相似文献
9.
10.
一种基于互信息和小波分解的图像配准算法 总被引:2,自引:0,他引:2
为了寻找快速、精确、鲁棒性强的自动配准算法,论文提出了基于互信息和小波分解图像配准方法。假设实时图像和模板图像之间的变换为仿射变换,采用金字塔小波分解和边缘特征提取获得特征点,利用分层特征点方法进行配准,以互信息最大作为度量准则,在每层上利用互信息的最大值来获取变换参数,然后得到全局变换参数。仿真结果表明此方法具有很好的抗干扰性、鲁棒性和精确性。 相似文献
11.
基于互信息的医学图像配准,可以达到亚像素级精度且无需提取图像的解剖特征,是一种高精稳健的配准方法。但其中频繁的互信息计算使配准速度很慢,不能满足临床的实时要求。提出一种基于统计直方图灰度压缩的互信息加速计算方法,能显著减少灰度级,加快互信息计算,从而加快配准速度。实验表明,该方法能在不影响配准精度的前提下显著缩短配准时间。 相似文献
12.
提出了一种基于互信息与边缘互距离信息的医学图像配准新测度。该种测度既利用了待配准图像间的灰度互信息,又利用了图像边缘间的互距离均值和互距离方差空间信息,从而改进了互信息测度。实验证明这种测度得到的配准参数曲线光滑且峰值尖锐,收敛范围宽,对图像大小有更强的鲁棒性,在图像互信息值一样的情况下,仍有辨识能力。 相似文献
13.
14.
传统的归一化互信息配准方法未利用图像的空间信息,当图像中混有一定噪声时,会出现误配准。边缘是图像最基本的特征之一,为了改进归一化互信息方法,提高图像配准的精度,加快收敛速度,将图像的边缘信息与灰度信息自适应地结合,形成归一化边缘互信息测度(NCMI),提出一种基于加速因子的自适应加速粒子群优化算法(AAPSO)来优化基于NCMI测度的图像配准。AAPSO算法通过对解排序,将指定数量的劣解进行进化加速来引导粒子的飞行,并对自适应惯性权重公式加以改进,提高了算法的收敛性,防止早熟收敛并增加优化解的多样性,同时加入加速因子来提高收敛速度。实验结果表明,该方法配准精度高,速度快,具有较强的实用性。 相似文献
15.
基于最大互信息和量子粒子群优化算法的医学图像配准研究* 总被引:4,自引:1,他引:4
研究了基于最大互信息的图像配准算法,在图像配准中引入了新的相似性测度,在分析具有量子行为的粒子群优化算法基础上,将量子粒子群算法作为优化策略用于图像配准并与Powell算法和PSO算法进行了仿真比较,对仿真结果进行了分析。 相似文献
16.
基于互信息的医学图像配准中改进的采样方法 总被引:2,自引:1,他引:2
研究了以互信息为相似性测度的医学图像配准方法,在互信息计算过程中,对图像数据的采样提出了一种基于信息熵的采样方法。这种方法是将图像分成一定数量的小方块,计算每一小方块的熵,根据熵值的大小对方块进行分类,不同的类设置不同的采样因子:熵值大的方块对应的采样因子大,熵值小的方块对应的采样因子小。通过实验证明,该方法能够折中配准的精度和速度,适用于医学图像配准的实时处理。 相似文献
17.
提出了一种新的基于霍特林变换的三维医学图像快速配准算法,这是将数据压缩技术用于图像配准的一种创新性尝试。传统的基于灰度的方法需要考虑整个三维数据的灰度信息,计算复杂度大,无法满足临床需要。论文将Otus算法与互信息量技术相结合提出了一种新的图像分割算法,用于提取待配准物体,从而得到物体的向量表示;然后通过霍特林变换的平移和旋转性质完成配准。实验结果表明此方法能准确,快速地处理图像刚性配准问题,特别适用于三维医学图像的配准。 相似文献
18.
基于高维互信息量的图像配准 总被引:1,自引:0,他引:1
基于互信息量的图像配准算法只考虑单个相对应点间的关系,忽略了图像的空间信息,因此当图像分辨率较低、有噪声影响和部分缺损时就容易出现误配.将图像的空间信息引入到配准中,考虑对应点及其邻域的关系,提出了一种新的相似性测度--高维互信息量.新的测度不仅能够反映图像的灰度统计信息,而且能够反映图像的空间信息.实验结果表明,在图像空间分辨率较低、有噪声影响和图像部分缺损的情况下,该算法具有较高的准确性. 相似文献