首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While intravenous and volatile anesthetics have widely differing effects on cerebral blood flow (CBF), clinical studies suggest that the relative differences in their effects on intracranial pressure (ICP) may be smaller. Because acute changes in ICP are determined primarily by changes in cerebral blood volume (CBV), we compared the impact of propofol, pentobarbital, and isoflurane on CBF and CBV in rats. Equipotent doses of the three agents were determined by tail-clamp studies. Animals were then anesthetized with propofol (20 mg/kg load, 38 mg.kg-1.h-1 infusion), pentobarbital (30 mg/kg load, 20 mg.kg-1.h-1 infusion), or isoflurane 1.6-1.8%. Two hours later, CBF and CBV were measured using 3H-nicotine as a CBF tracer, and 14C-dextran and 99mTc-labeled red cells as markers for cerebral plasma and red blood cell volumes (CPV and CRBCV), respectively. Total CBV was the sum of CPV and CRBCV. CBF was 2.0-2.6 times greater with isoflurane than with propofol or pentobarbital (137 vs. 67 and 52 ml.100 g-1.min-1, respectively). By contrast, while CBV was greater in the isoflurane group than in either the propofol or pentobarbital groups, the magnitude of the intergroup differences were much smaller (propofol = 2.49 +/- 0.28 ml/100 g; pentobarbital = 2.27 +/- 0.15 ml/100 g; isoflurane = 2.77 +/- 0.24 ml/100 g, mean +/- SD). These results suggest that the simple measurement of CBF may not adequately describe the cerebrovascular effects of an anesthetic, at least with respect to predicting the magnitude of the agents likely effects on ICP.  相似文献   

2.
Hypoxemia and anemia are associated with increased CBF, but the mechanisms that link the changes in PaO2 or arterial O2 content (CaO2) with CBF are unclear. These experiments were intended to examine the contribution of nitric oxide. CaO2 in pentobarbital-anesthetized rabbits was reduced to approximately 6.5 mL O2/dL by hypoxemia (PaO2 approximately 24 to 26 mm Hg) or hemodilution with hetastarch (hematocrit approximately 14% to 15%). Animals with normal CaO2 (approximately 17.5 to 18 mL O2/dL) served as controls. In part I, each animal was given 3, 10, and 30 mg/kg N omega-nitro-L-arginine methyl ester (L-NAME) intravenously (total 43 mg/kg) to inhibit production of nitric oxide. Forebrain CBF was measured with radioactive microspheres approximately 15 to 20 minutes after each dose. Baseline CBF was greater in hypoxemic rabbits (111 +/- 31 mL x 100 g-1 x min-1, mean +/- SD) than in hemodiluted (70 +/- 22 mL x 100 g-1 min-1) or control animals (39 +/- 12 mL x 100 g-1 min-1). L-NAME (which reduced brain tissue nitric oxide synthase activity by approximately 65%) reduced CBF in hypoxemic animals to 80 +/- 23 mL x 100 g-1 x min-1 (P < 0.0001), but had no significant effect on CBF in either anemic or control animals. In four additional rabbits, further hemodilution to a CaO2 of approximately 3.5 mL O2/dL increased baseline CBF to 126 +/- 21 mL x 100 g-1 min-1, but again there was no effect of L-NAME. In part II, animals were anesthetized as above, and a close cranial window was prepared. The cyclic GMP (cGMP) content of the artificial CSF superfusate was measured under baseline conditions, and then after the reduction of CaO2 to approximately 6.5 mL O2/dL by either hypoxemia or hemodilution. Concentrations of cGMP did not change during either control conditions or after hemodilution. However, cGMP increased significantly with the induction of hypoxemia. The cGMP increase in hypoxemic animals could be blocked with L-NAME. These results suggest that nitric oxide plays some role in hypoxemic vasodilation, but not during hemodilution.  相似文献   

3.
BACKGROUND: Although pulsatile and nonpulsatile cardiopulmonary bypass (CPB) do not differentially affect cerebral blood flow (CBF) or metabolism during hypothermia, studies suggest pulsatile CPB may result in greater CBF than nonpulsatile CPB under normothermic conditions. Consequently, nonpulsatile flow may contribute to poorer neurologic outcome observed in some studies of normothermic CPB. This study compared CBF and cerebral metabolic rate for oxygen (CMRO2) between pulsatile and nonpulsatile CPB at 37 degrees C. METHODS: In experiment A, 16 anesthetized New Zealand white rabbits were randomized to one of two pulsatile CPB groups based on pump systolic ejection period (100 and 140 ms, respectively). Each animal was perfused at 37 degrees C for 30 min at each of two pulse rates (150 and 250 pulse/min, respectively). This scheme created four different arterial pressure waveforms. At the end of each perfusion period, arterial pressure waveform, arterial and cerebral venous oxygen content, CBF (microspheres), and CMRO2 (Fick) were measured. In experiment B, 22 rabbits were randomized to pulsatile (100-ms ejection period, 250 pulse/min) or nonpulsatile CPB at 37 degrees C. At 30 and 60 min of CPB, physiologic measurements were made as before. RESULTS: In experiment A, CBF and CMRO2 were independent of ejection period and pulse rate. Thus, all four waveforms were physiologically equivalent. In experiment B, CBF did not differ between pulsatile and nonpulsatile CPB (72 +/- 6 vs. 77 +/- 9 ml.100 g-1.min-1, respectively (median +/- quartile deviation)). CMRO2 did not differ between pulsatile and nonpulsatile CPB (4.7 +/- 0.5 vs. 4.1 +/- 0.6 ml O2.100 g-1.min-1, respectively) and decreased slightly (0.4 +/- 0.4 ml O2.100 g-1.min-1) between measurements. CONCLUSIONS: During CPB in rabbits at 37 degrees C, neither CBF nor CMRO2 is affected by arterial pulsation. The absence of pulsation per se is not responsible for the small decreases in CMRO2 observed during CPB.  相似文献   

4.
We measured CBF and CO2 reactivity after traumatic brain injury (TBI) produced by controlled cortical impact (CCI) using magnetic resonance imaging (MRI) and spin-labeled carotid artery water protons as an endogenous tracer. Fourteen Sprague-Dawley rats divided into TBI (CCI; 4.02 +/- 0.14 m/s velocity; 2.5 mm deformation), sham, and control groups were studied 24 hours after TBI or surgery. Perfusion maps were generated during normocarbia (Paco2 30 to 40 mm Hg) and hypocarbia (PaCO2 15 to 25 mm Hg). During normocarbia, CBF was reduced within a cortical region of interest (ROI, injured versus contralateral) after TBI (200 +/- 82 versus 296 +/- 65 mL.100 g-1.min-1, P < 0.05). Within a contusion-enriched ROI, CBF was reduced after TBI (142 +/- 73 versus 280 +/- 64 mL.100 g-1.min-1, P < 0.05). Cerebral blood flow in the sham group was modestly reduced (212 +/- 112 versus 262 +/- 118 mL.100 g-1.min-1, P < 0.05). Also, TBI widened the distribution of CBF in injured and contralateral cortex. Hypocarbia reduced cortical CBF in control (48%), sham (45%), and TBI rats (48%) versus normocarbia, P < 0.05. In the contusion-enriched ROI, only controls showed a significant reduction in CBF, suggesting blunted CO2 reactivity in the sham and TBI group. CO2 reactivity was reduced in the sham (13%) and TBI (30%) groups within the cortical ROI (versus contralateral cortex). These values were increased twofold within the contusion-enriched ROI but were not statistically significant. After TBI, hypocarbia narrowed the CBF distribution in the injured cortex. We conclude that perfusion MRI using arterial spin-labeling is feasible for the serial, noninvasive measurement of CBF and CO2 reactivity in rats.  相似文献   

5.
BACKGROUND: In several animal studies, an increase in cerebral blood flow (CBF) produced by volatile anesthetics has been reported to resolve over time during prolonged anesthesia. It is important to investigate whether this time-dependent change of CBF takes place in humans, especially in clinical situations where surgery is ongoing under anesthesia. In this study, to evaluate the effect of prolonged exposure to volatile anesthetics (isoflurane, sevoflurane, and halothane), the CBF equivalent (CBF divided by cerebral metabolic rate for oxygen (CMRO2) was determined every 20 min during anesthesia lasting more than 4h in patients. METHODS: Twenty-four surgical patients were assigned to three groups at random to receive isoflurane, sevoflurane, or halothane (8 patients each). End-tidal concentration of the selected volatile anesthetic was maintained at 0.5 and 1.0 MAC before surgery and then 1.5 MAC for the 3 h of surgical procedure. Normothermia and normocapnia were maintained. Mean arterial blood pressure was kept above 60 mmHg, using phenylephrine infusion, if necessary. CBF equivalent was calculated every 20 min as the reciprocal of arterial-jugular venous oxygen content difference. RESULTS: CBF equivalent at 0.5 MAC of isoflurane, halothane, and sevoflurane was 21 +/- 4, 20 +/- 3, and 21 +/- 5 ml blood/ml oxygen, respectively. All three examined volatile anesthetics significantly (P<0.01) increased CBF equivalent in a dose-dependent manner (0.5, 1.0, 1.5 MAC). AT 1.5 MAC, the increase of CBF equivalent with all anesthetics was maintained increased with minimal fluctuation for 3 h. The mean value of CBF equivalent at 1.5 MAC in the isoflurane group (45 +/- 8) was significantly (P<0.01) greater than those in the halothane (32 +/- 8) and sevoflurane (31 +/- 8) groups. Electroencephalogram was found to be relatively unchanged during observation periods at 1.5 MAC. CONCLUSIONS: These results demonstrate that CBF/CMRO2 ratio is markedly increased above normal and maintained during prolonged inhalation of volatile anesthetics in humans. It is impossible to determine whether these data indicate a stable CBF or whether CBF and CMRO2 are changing in parallel during the observation period. The unchanging electroencephalographic pattern suggests that the former possibility is more likely and that the increase of CBF produced by volatile anesthetics is maintained over time without decay, which has been reported in several animal studies. It also is suggested that isoflurane possesses greater capability to maintain global CBF relative to CMRO(2) than does halothane or sevoflurane. time.)  相似文献   

6.
Hemorrhage after traumatic brain injury (TBI) in cats produces significant decreases in cerebral oxygen delivery (DcereO2) and electroencephalographic (EEG) activity. To determine whether effective treatments for the separate insults of TBI and hemorrhagic shock would also prove effective after the clinically relevant combination of the two, we measured the effects of a kappa-opiate antagonist (nalmefene), an inhibitor of lipid peroxidation (tirilazad), a thyrotropin-releasing hormone analog (CG3703), a clinically useful pressor agent (dopamine) or a saline placebo on cerebral blood flow (CBF), and EEG activity after TBI and mild hemorrhagic hypotension. Cats (n = 40, 8 per group) were anesthetized with 1.6% isoflurane in N2O:O2 (70:30) and prepared for fluid-percussion TBI and microsphere measurements of CBF. Cats were randomized to receive nalmefene (1 mg/kg), tirilazad (5 mg/kg), CG3703 (2 mg/kg), dopamine (20 microg x kg(-1) x min[-1]) or a saline placebo (2 ml, 0.9% NaCl). Animals were injured (2.2 atm), hemorrhaged to 70% of preinjury blood volume, treated as just described and resuscitated with a volume of 10% hydroxyethyl starch equal to shed blood. CBF was determined and EEG activity recorded before injury, after hemorrhage, and 0, 60, and 120 min after resuscitation (R0, R60, and R120). CBF increased significantly after resuscitation (R0) in the nalmefene- and CG3703-treated groups. CBF did not differ significantly from baseline in any group at R60 or R120. DcereO2 was significantly less than baseline in the saline-, dopamine-, and tirilazad-treated groups at R60 and in the dopamine-, tirilazad-, and CG3703-treated groups at R120. EEG activity remained unchanged in the nalmefene-treated group but deteriorated significantly at R60 or R120 compared to baseline in the other groups. Nalmefene and CG3703 preserved the hyperemic response to hemodilution (otherwise antagonized by TBI), and nalmefene prevented the deterioration in DcereO2 and EEG activity that occurs after TBI and hemorrhage.  相似文献   

7.
The changes in regional cerebral blood flow (CBF) in response to prolonged hypoxaemia were measured using coloured microspheres in the 0.6-gestation ovine fetus (n = 5). Fetal hypoxaemia was induced for 12 h by reducing maternal uterine blood flow with an adjustable clamp. CBF (mL min-1 100 g-1) was increased (P < 0.05) from control values (38.7 +/- 3.5) to 105.6 +/- 5.6 at 6 h of hypoxaemia, and to 121.9 +/- 23.1 at 12 h of hypoxaemia. One hour after fetal hypoxaemia had ceased, CBF (54.0 +/- 3.3) had decreased (P < 0.05) towards control values indicating incomplete cardiovascular recovery. Cerebral vascular resistance at 6 h and 12 h of hypoxaemia was lower (P < 0.05) than control values, and returned to control values 1 h after fetal hypoxaemia had ceased. Cerebral oxygen delivery at 6 h and 12 h of hypoxaemia was not significantly different from control values, but was higher (P < 0.05) 1 h after hypoxaemia had ceased. It is concluded that CBF is sufficiently increased during prolonged hypoxaemia in the mid-gestation fetus to maintain cerebral oxygen delivery.  相似文献   

8.
The purpose of this study was to determine whether reduction in apparent muscle O2 diffusing capacity (Dmo2) calculated during reduced blood flow conditions in maximally working muscle is a reflection of alterations in blood flow distribution. Isolated dog gastrocnemius muscle (n = 6) was stimulated for 3 min to achieve peak O2 uptake (VO2) at two levels of blood flow (controlled by pump perfusion): control (C) conditions at normal perfusion pressure (blood flow = 111 +/- 10 ml.100 g-1.min-1) and reduced blood flow treatment [ischemia (I); 52 +/- 6 ml.100 g-1.min-1]. In addition, maximal vasodilation was achieved by adenosine (A) infusion (10(-2)M) at both levels of blood flow, so that each muscle was subjected randomly to a total of four conditions (C, CA, I, and IA; each separated by 45 min of rest). Muscle blood flow distribution was measured with 15-microns-diameter colored microspheres. A numerical integration technique was used to calculate Dmo2 for each treatment with use of a model that calculates O2 loss along a capillary on the basis of Fick's law of diffusion. Peak VO2 was reduced significantly (P < 0.01) with ischemia and was unchanged by adenosine infusion at either flow rate (10.6 +/- 0.9, 9.7 +/- 1.0, 6.7 +/- 0.2, and 5.9 +/- 0.8 ml.100 g-1.min-1 for C, CA, I, and IA, respectively). Dmo2 was significantly lower by 30-35% (P < 0.01) when flow was reduced (except for CA vs. I; 0.23 +/- 0.03, 0.20 +/- 0.02, 0.16 +/- 0.01, and 0.13 +/- 0.01 ml.100 g-1.min-1.Torr-1 for C, CA, I, and IA, respectively). As expressed by the coefficient of variation (0.45 +/- 0.04, 0.47 +/- 0.04, 0.55 +/- 0.03, and 0.53 +/- 0.04 for C, CA, I, and IA, respectively), blood flow heterogeneity per se was not significantly different among the four conditions when examined by analysis of variance. However, there was a strong negative correlation (r = 0.89, P < 0.05) between Dmo2 and blood flow heterogeneity among the four conditions, suggesting that blood flow redistribution (likely a result of a decrease in the number of perfused capillaries) becomes an increasingly important factor in the determination of Dmo2 as blood flow is diminished.  相似文献   

9.
1. An investigation was carried out in five healthy lean adults to assess whether forearm and calf plethysmography largely reflect muscle blood flow as measured by 133Xe and whether there is substantial variability in the blood flow to muscles located at different sites in the body. 2. Blood flow to forearm and calf flexors and extensors, biceps, triceps and quadriceps was assessed using the 133Xe clearance technique. Blood flow to forearm skin and subcutaneous adipose tissue was also measured using the 133Xe clearance technique, whereas blood flow to the forearm and calf was measured using strain gauge plethysmography. 3. The mean blood flow to different muscles ranged from 1.4 +/- 0.6 (gastrocnemius) to 1.8 +/- 0.7 (forearm extensor) ml min-1 100 g-1 muscle (1.4 +/- 0.6 and 1.9 +/- 0.8 ml min-1 100 ml-1 muscle, respectively) but there were no significant differences between them. Forearm and calf blood flows (2.7 +/- 0.3 and 3.0 +/- 0.7 ml min-1 100 ml-1 limb tissue, respectively) were about 50% to more than 100% greater (P < 0.025) than blood flow to the muscles within them (1.7 +/- 0.5 and 1.4 +/- 0.5 ml min-1 100 g-1 muscle, respectively, or 1.8 +/- 0.6 and 1.5 +/- 0.5 ml min-1 100 ml-1 muscle, respectively). In contrast, the blood flows to 100 g of forearm skin (9.1 +/- 2.6 ml min-1 100 g-1) and adipose tissue (3.8 +/- 1.1 ml min-1 100 g-1) were higher than the blood flow to 100 g of forearm (P < 0.01 and not significant, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
BACKGROUND: It is unclear whether nonpulsatile perfusion adversely affects the brain. This study compared cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) betwen pulsatile and nonpulsatile cardiopulmonary bypass (CPB) in rabbits at 27 degrees C. METHODS: In experiment A, 24 anesthetized New Zealand white rabbits underwent pulsatile CPB at 27 degrees C, using alpha-stat acid-base management. Animals were randomized to three groups based upon the duration of the period of systolic ejection (100, 120, 140 ms) and were perfused for 20 min at each of three pulse rates (150, 200, 250 pulse/min), generating nine arterial pressure waveforms. Arterial pressure waveform, arterial and cerebral venous oxygen content, CBF (radiolabeled microspheres), and CMRO2 (Fick) were measured at the end of each 20-min period. In experiment B, 16 anesthetized rabbits were randomized to pulsatile (120-ms ejection period, 250 pulse/min) or nonpulsatile CPB at 27 degrees C. AFter 1 h, arterial pressure waveform, arterial and cerebral venous oxygen content, CBF and CMRO2 were measured. RESULTS: In experiment A, CBF and CMRO2 were independent of ejection period and pulse rate. Thus, all nine waveforms were physiologically equivalent. In experiment B, CBF did not differ between pulsatile and nonpulsatile bypass, 30 +/- 4 versus 32 +/- 5 ml.100 g-1.min-1, respectively. CMRO2 did not differ between pulsatile and nonpulsatile bypass, 1.7 +/- 0.2 versus 1.6 +/- 0.2 ml.100 g-1.min-1, respectively. CONCLUSIONS: During CPB in rabbits at 27 degrees C, neither CBF nor CMRO2 is affected by flow character.  相似文献   

11.
Adenosine, an endogenous vasodilator, induces a cerebral vasodilation at hypotensive infusion rates in anaesthetized humans. At lower doses (< 100 micrograms kg-1 min-1), adenosine has shown to have an analgesic effect. This study was undertaken to investigate whether a low dose, causing tolerable symptoms of peripheral vasodilation affects the global cerebral blood flow (CBF). In nine healthy volunteers CBF measurements were made using axial magnetic resonance (MR) phase images of the internal carotid and vertebral arteries at the level of C2-3. Quantitative assessment of CBF was also obtained with positron emission tomography (PET) technique, using intravenous bolus [15O]butanol as tracer in four of the subject at another occasion. During normoventilation (5.4 +/- 0.2 kPa, mean +/- s.e.m.), the cerebral blood flow measured by magnetic resonance imaging technique, as the sum of the flows in both carotid and vertebral arteries, was 863 +/- 66 mL min-1, equivalent to about 64 +/- 5 mL 100 g-1 min-1. The cerebral blood flow measured by positron emission tomography technique, was 59 +/- 4 mL 100 g-1 min-1. All subjects had a normal CO2 reactivity. When adenosine was infused (84 +/- 7 micrograms kg-1 min-1.) the cerebral blood flow, measured by magnetic resonance imaging was 60 +/- 5 mL 100 g-1 min-1. The end tidal CO2 level was slightly lower (0.2 +/- 0.1 kPa) during adenosine infusion than during normoventilation. In the subgroup there was no difference in cerebral blood flow as measured by magnetic resonance imaging or positron emission tomography. In conclusion, adenosine infusion at tolerable doses in healthy volunteers does not affect global cerebral blood flow in unanaesthetized humans.  相似文献   

12.
BACKGROUND: Because patients may be taking clonidine chronically or may be receiving it as a premedication before surgery, the authors investigated its effect on cerebral hemodynamics. METHODS: In nine volunteers, middle cerebral artery mean blood flow velocity (Vm) was measured using transcranial Doppler ultrasonography (TCD). CO2 vasoreactivity was measured before clonidine administration (preclonidine), 90 min after clonidine, 5 microg/kg orally, then following restoration of mean arterial pressure (MAP) to the preclonidine level. In addition, Vm was measured after a phenylephrine-induced 30-mmHg increase in MAP. RESULTS: After clonidine administration, Vm decreased from 62 +/- 9 to 48 +/- 8 cm/s (P < 0.01), and MAP decreased from 86 +/- 10 to 63 +/- 5 mmHg (P < 0.01; mean +/- SD). Clonidine decreased the CO2 vasoreactivity slope from 2.2 +/- 0.4 to 1.2 +/- 0.5 cm x s(-1) x mmHg(-1) (P < 0.05); restoring MAP to the preclonidine level increased the slope to 1.60 +/- 0.5 cm x s(-1) x mmHg(-1), still less than the preclonidine slope (P < 0.05). CO2 vasoreactivity expressed as a percentage change in Vm, decreased after clonidine, 3.5 +/- 0.8 versus 2.4 +/- 0.8 %/mmHg (P < 0.05); this difference disappeared after restoration of MAP, 3.1 +/- 1.2 %/mmHg. With a 30-mmHg increase in MAP, Vm increased by 13% before and after clonidine (P < 0.05). CONCLUSIONS: Clonidine, 5 microg/kg orally, decreases Vm and slightly attenuates cerebral CO2 vasoreactivity, therefore decreased cerebral blood flow and mildly attenuated CO2 vasoreactivity should be anticipated.  相似文献   

13.
BACKGROUND: It has been postulated that anesthetic agents that reduce cerebral metabolic rate will protect the brain against ischemia when electroencephalographic (EEG) activity is persistent, but will provide no protection when ischemia is severe enough to cause EEG isoelectricity. No outcome studies have addressed this issue. The authors studied anesthetic agents to determine if they provide differential effects on outcome from global cerebral ischemic insults that cause either an attenuated or isoelectric EEG. METHODS: Fasted rats were subjected to either (1) incomplete ischemia (attenuated EEG; 20 min of mean arterial pressure [MAP] = 50 mmHg and bilateral carotid occlusion) or (2) near-complete ischemia (isoelectric EEG; 10 min of MAP = 30 mmHg and bilateral carotid occlusion) while anesthetized with 1.4% isoflurane, 1 mg x kg(-1) x min(-1) ketamine, or 25 microg x kg(-1) x h(-1) 70% nitrous oxide and fentanyl. The brain was maintained at normothermia during ischemia and for 22 h after ischemia. Five days later, hippocampal CA1 and cortical injury were measured. RESULTS: There was no difference among anesthetic agents during incomplete ischemia for mean +/- SD percentage dead CA1 neurons (fentanyl, 38%+/-20%; isoflurane, 31%+/-10%; ketamine, 40%+/-19%; P = 0.38). During near-complete ischemia, there was a difference among anesthetic agents (fentanyl, 88%+/-9%; isoflurane, 37%+/-20%; ketamine, 70%+/-28%; P = 0.00008). Isoflurane was protective compared with fentanyl (P = 0.00007) and ketamine (P = 0.0061). There was no difference between fentanyl and ketamine (P = 0.143). Similar observations were made in the cortex. Neurologic function correlated with histologic damage. CONCLUSIONS: Outcome from near-complete but not incomplete cerebral ischemia depended on the anesthetic agent administered during the ischemic insult.  相似文献   

14.
In this study we have examined (1) the integrated function of the mitochondrial respiratory chain by polarographic measurements and (2) the activities of the respiratory chain complexes I, II-III, and IV as well as the ATP synthase (complex V) in free mitochondria and synaptosomes isolated from gerbil brain, after a 30-min period of graded cerebral ischaemia. These data have been correlated with cerebral blood flow (CBF) values as measured by the hydrogen clearance technique. Integrated functioning of the mitochondrial respiratory chain, using both NAD-linked and FAD-linked substrates, was initially affected at CBF values of approximately 35 ml 100 g-1 min-1, and declined further as the CBF was reduced. The individual mitochondrial respiratory chain complexes, however, showed differences in sensitivity to graded cerebral ischaemia. Complex I activities decreased sharply at blood flows below approximately 30 ml 100 g-1 min-1 (mitochondria and synaptosomes) and complex II-III activities decreased at blood flows below 20 ml 100 g-1 min-1 (mitochondria) and 35-30 ml 100 g-1 min-1 (synaptosomes). Activities declined further as CBF was reduced below these levels. Complex V activity was significantly affected only when the blood flow was reduced below 15-10 ml 100 g-1 min-1 (mitochondria and synaptosomes). In contrast, complex IV activity was unaffected by graded cerebral ischaemia, even at very low CBF levels.  相似文献   

15.
The present experiments were designed to compare the behavior of cerebral blood flow (CBF) during acute moderate and severe hypotensive episodes induced by either ventricular tachycardias (VT) or by hemorrhage. Using the microsphere method CBF was determined in 20 Sprague-Dawley rats during sinus rhythm (Group A), in 28 animals during high-rate VT (Group B) and in 10 animals after hemorrhage (Group C). According to the decrease in blood pressure and with respect to the lower threshold of cerebral autoregulation Group B was divided into 2 subgroups (B1: 80-130 mmHg; B2: 50-80 mmHg) retrospectively. While CBF remained constant in Group B1 (0.98 +/- 0.3 ml g-1 min-1 vs. 1.01 +/- 0.32 in controls, NS), CBF decreased markedly during severely hypotensive VT in Group B2 (0.52 +/- 0.2 ml g-1 min-1, p < 0.001 vs. A; p < 0.05 vs. C) and during hypovolemic hypotension in Group C (0.77 +/- 0.22 ml g-1 min-1 vs. A; NS). Cerebrovascular resistance and autoregulation indices indicated a maintenance of CBF regulation during hypovolemic hypotension and a failure during normovolemic hypotension. These findings indicate that the autoregulatory ability of the brain is substantially more stable during hypovolemic hypotension than during normovolemic hypotension. Therefore, the hemodynamic sequelae of acute hypotensive episodes on CBF depend on the underlying cause of hypotension.  相似文献   

16.
Rat extensor digitorum longus muscles were overloaded by stretch after removal of the synergist tibialis anterior muscle to determine the relationship between capillary growth, muscle blood flow, and presence of growth factors. After 2 wk, sarcomere length increased from 2.4 to 2.9 micrometers. Capillary-to-fiber ratio, estimated from alkaline phosphatase-stained frozen sections, was increased by 33% (P < 0.0001) and 60% (P < 0.01), compared with control muscles (1.44 +/- 0.06) after 2 and 8 wk, respectively. At 2 wk, the increased capillary-to-fiber ratio was not associated with any changes in mRNA for basic fibroblast growth factor (FGF-2) or its protein distribution. FGF-2 immunoreactivity was present in nerves and large blood vessels but was negative in capillaries, whereas the activity of low-molecular endothelial-cell-stimulating angiogenic factor (ESAF) was 50% higher in stretched muscles. Muscle blood flows measured by radiolabeled microspheres during contractions were not significantly different after 2 or 8 wk (132 +/- 37 and 177 +/- 22 ml. min-1. 100 g-1, respectively) from weight-matched controls (156 +/- 12 and 150 +/- 10 ml. min-1. 100 g-1, respectively). Resistance to fatigue during 5-min isometric contractions (final/peak tension x 100) was similar in 2-wk overloaded and contralateral muscles (85 vs. 80%) and enhanced after 8 wk to 92%, compared with 77% in contralateral muscles and 67% in controls. We conclude that increased blood flow cannot be responsible for initiating expansion of the capillary bed, nor does it explain the reduced fatigue within overloaded muscles. However, stretch can present a mechanical stimulus to capillary growth, acting either directly on the capillary abluminal surface or by upregulating ESAF, but not FGF-2, in the extracellular matrix.  相似文献   

17.
To study the effects of batroxobin on coronary circulation and cardiac performance in acute myocardial ischemia, Batroxobin was given intravenously to dogs with experimental coronary stenosis. A dose-dependent increase of coronary blood flow (CBF) was observed. Forty minutes after batroxobin (2 BU.kg-1 at infusion rate 0.1 BU.kg-1.min-1) administration, CBF increased by 12% (P < 0.05), small coronary resistance(RS) decreased from 4.1 +/- 0.5 to 3.2 +/- 0.5 mmHg.min.ml-1 (P < 0.01), while large coronary resistance(RL) changed insignificantly from 3.9 +/- 0.8 to 3.8 +/- 0.7 mmHg.min.ml-1 (P > 0.05). Two hours following drug administration, the changes in CBF, RS and RL still remained and RT decreased by 13% (P < 0.05). The + LV(dp/dt)max and -LV(dp/dt)max increased by 14% and 16% (P < 0.05) respectively compared with those in control group. It is concluded that batroxobin improves the ischemic canine coronary circulation and cardiac performance by way of lowering the small coronary resistance and thus increasing CBF. The data also suggest the benificial effect of batroxobin in acute myocardial ischemia.  相似文献   

18.
BACKGROUND: It has been postulated that nitric oxide (NO) is a neurotransmitter involved in consciousness, analgesia, and anesthesia. Halothane has been shown to attenuate NO-mediated cyclic guanosine monophosphate accumulation in neurons, and a variety of anesthetic agents attenuate endothelium-mediated vasodilation, suggesting an interaction of anesthetic agents and the NO-cyclic guanosine monophosphate pathway. However, the exact site of anesthetic inhibitory action in this multistep pathway is unclear. The current study examines effects of volatile and intravenous anesthetic agents on the enzyme nitric oxide synthase (NOS) in brain. METHODS: NOS activity was determined by in vitro conversion of [14C]arginine to [14C]citrulline. Wistar rats were decapitated and cerebellum quickly harvested and homogenized. Brain extracts were then examined for NOS activity in the absence and presence of the volatile anesthetics halothane and isoflurane, and the intravenous agents fentanyl, midazolam, ketamine, and pentobarbital. Dose-response curves of NOS activity versus anesthetic concentration were constructed. Effects of anesthetics on NOS activity were evaluated by analysis of variance. RESULTS: Control activities were 57.5 +/- 4.5 pmol.mg protein-1.min-1 in the volatile anesthetic experiments and 51.5 +/- 6.5 pmol.mg protein-1.min-1 in the intravenous anesthetic experiments. NOS activity was not affected by ketamine (< or = 1 x 10(-4) M), pentobarbital (< or = 5 x 10(-5) M), fentanyl (< or = 1 x 10(-5) M), and midazolam (< or = 1 x 10(-5) M). Halothane decreased NOS activity to 36.7 +/- 2.5 (64% of control, P < 0.01 from control), 23.8 +/- 4.3 (41%, P < 0.01 from control and < 0.05 from 0.5% halothane), 25.2 +/- 3.8 (44%, P < 0.01 from control and < 0.05 from 0.5% halothane), and 19.7 +/- 2.8 (34%, P < 0.01 from control and < 0.05 from 0.5% halothane) pmol.mg protein-1.min-1 at 0.5, 1.0, 2.0, and 3.0% vapor. Isoflurane decreased NOS activity to 48.9 +/- 6.1 (85% of control), 46.0 +/- 3.2 (80%, P < 0.05 from control), 40.3 +/- 5.1 (70%, P < 0.05 from control), and 34.2 +/- 4.0 (60%, P < 0.05 from control and 0.5% and 1.0% isoflurane) pmol.mg protein-1.min-1 at 0.5, 1.0, 1.5, 2.0% vapor, respectively. CONCLUSIONS: Volatile anesthetics inhibit brain NOS activity in an in vitro system, but the intravenous agents examined have no effect at clinically relevant concentrations. This inhibition suggests a protein-anesthetic interaction between halothane, isoflurane, and NOS. In contrast, intravenous agents appear to have no direct effect on NOS activity. Whether intravenous agents alter signal transduction or regulatory pathways that activate NOS is unknown.  相似文献   

19.
The extracellular lactate concentration and blood flow in the cerebral cortex of urethane-anesthetized, paralyzed and artificially ventilated rats were monitored continuously and simultaneously using an enzyme electrode and a laser Doppler flowmeter (LDF), respectively, during chemical stimulation of the nucleus tractus solitarii (NTS) by microinjection of L-glutamate (1.7 nmol 50 nl). Chemical stimulation of the NTS significantly decreased the arterial blood pressure (ABP) from 85 +/- 17 to 68 +/- 14 mmHg, heart rate from 418 +/- 13 to 402 +/- 19 beats x min(-1) and cerebral blood flow (CBF) by 17.9 +/- 6.2% (P < 0.001). However, chemical stimulation of the NTS significantly increased the lactate concentration by 58.9 +/- 17.3 microM (P < 0.001). Barostat maneuver, which held systemic ABP constant during chemical stimulation of the NTS attenuated the responses in CBF and lactate concentration by 30 and 27%, respectively. The onset of the increase in lactate concentration was delayed about 19 s after that of the CBF decrease. Circulatory lactate produced no significant change in the cerebral extracellular lactate concentration. These results indicate that chemical stimulation of the NTS induces an increase in extracellular lactate concentration in the cerebral cortex through a decrease in CBF via cerebral vasoconstriction.  相似文献   

20.
Decreased arterial partial oxygen pressure (PaO2) below a certain level presents a strong stimulus for increasing cerebral blood flow. Although several field studies examined the time course of global cerebral blood flow (gCBF) changes during hypoxia at high altitude, little was known about the regional differences in the flow pattern. Positron emission tomography (PET) with [(15)O]H2O was used on eight healthy volunteers to assess regional cerebral blood flow (rCBF) during short-term exposure to hypoxia corresponding to simulated altitudes of 3,000 and 4,500 m. Scans at the simulated altitudes were preceded and followed by baseline scans at the altitude of Zurich (450 m, baseline-1 and baseline-2). Each altitude stage lasted 20 minutes. From baseline to 4,500 m, gCBF increased from 34.4 +/- 5.9 to 41.6 +/- 9.0 mL x minute(-1) x 100 g(-1) (mean +/- SD), whereas no significant change was noted at 3,000 m. During baseline-2 the flow values returned to those of baseline-1. Statistical parametric mapping identified the hypothalamus as the only region with excessively increased blood flow at 4,500 m (+32.8% +/- 21.9% relative to baseline-1). The corresponding value for the thalamus, the structure with the second largest increase, was 19.2% +/- 16.3%. Compared with the rest of the brain, an excessive increase of blood flow during acute exposure to hypoxia is found in the hypothalamus. The functional implications are at present unclear. Further studies of this finding should elucidate its meaning and especially focus on a potential association with the symptoms of acute mountain sickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号