首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 352 毫秒
1.
载荷作用下煤体变形与渗透性的相关性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
祝捷  姜耀东  孟磊  赵毅鑫 《煤炭学报》2012,37(6):984-988
利用含瓦斯煤热流固耦合三轴伺服渗流装置,进行了不同气体压力作用下煤样全应力应变过程的瓦斯渗流实验。实验结果显示,煤样渗透率与变形之间存在内在关联,渗透率变化呈现阶段性特点。基于考虑气体吸附性的含瓦斯煤有效应力,建立了加载煤样变形与渗透率的相关性模型,研究受荷煤样变形与瓦斯渗流的相互关系。理论分析表明:当应力控制边界条件时,渗透率与煤样变形密切相关;煤样渗透率的变化受到有效应力、煤样变形模量、孔隙率和气体吸附性的共同作用;有效应力系数是联系煤样变形和渗透率的关键参量。由于理论计算结果与实验曲线较为接近,因此模型反映了不同瓦斯压力下加载煤样变形与渗透率变化的基本特征。  相似文献   

2.
祝捷  王琪  唐俊  陈霁月  姜耀东  唐迪  兰天翔 《煤炭学报》2021,46(4):1203-1210
随着开采深度的增大,高瓦斯矿井、煤与瓦斯突出矿井,相继发生冲击地压或兼具冲击地压和煤与瓦斯突出特征的煤岩瓦斯复合动力灾害。在煤层开采过程中,采煤工作面前方煤体垂直应力陡增、水平应力卸除。煤层高瓦斯内能与煤岩系统地应力、支承压力的叠加为煤岩复合动力灾害的发生提供了力学条件。因此,为了研究气体压力和采动应力对煤岩变形和瓦斯流动状态的影响机制,利用煤岩变形-渗透率同步测试系统,采用轴向加载、径向卸载的加卸载实验方案模拟开采过程中支承压力和水平应力的变化特征,观测了煤样在不同气体压力下加卸载过程中的应变和气体流量。实验结果表明:加卸载初期差应力较低,煤样以压缩变形为主,其内部裂隙闭合,透气性降低;当差应力达到某一值时,相继出现气体流量由降低转为升高的拐点和扩容现象;扩容之后煤样产生塑性变形,其透气性进一步增大,更多气体从煤样中析出。大部分实验煤样发生扩容之前出现气体流量拐点,可见扩容之前,煤样内部的微裂缝已经开始延伸或者扩展。随着气体压力的升高,扩容起始点和气体流量拐点对应的差应力降低,因此高瓦斯压力会导致采动影响下煤体内部微裂缝扩展的应力门槛降低。气体压力较高(2.0 MPa)时,煤样扩容起...  相似文献   

3.
基于含瓦斯煤热流固耦合试验系统,进行了不同瓦斯压力条件下型煤试件渗透率与体积应变的试验研究。结果表明:随着瓦斯压力的增加,煤样的峰值强度呈减小的趋势;煤样的应力-轴向应变曲线与渗透率-轴向应变曲线有较好的对应关系;渗透率-体积应变曲线存在1个渗透率反弹点,反弹点前渗透率随体积应变的增加呈现出降低的趋势,反弹点后随着体积应变的减小呈现出增加的趋势;反弹点前和反弹点后渗透率与体积应变的关系均可以用线性表达式进行拟合,且拟合度比较高;反弹点前渗透率降低的趋势比反弹点后渗透率增加的趋势陡。  相似文献   

4.
利用KDZS-Ⅱ型煤体瓦斯瞬时解吸及渗流特性测试仪在0.31、0.61 MPa气体压力条件下,开展了新景矿3号煤层渗透率对有效应力敏感性实验分析。结果表明:新景矿3号煤层渗透率对有效应力具有极强的敏感性,煤层渗透率随有效应力增加而降低,二者之间具有良好的负指数幂函数关系;相同气体压力和有效应力下各煤样试件的渗透率变化不同且分异现象显著;煤样试件的渗透率大小与孔隙度、裂隙方向密切相关,煤样试件裂隙方向平行于轴线方向、孔隙度大时,煤样试件的渗透率相对较大;煤样试件的裂隙方向垂直于轴线方向、孔隙度较小时,煤样试件的渗透率相对较小。  相似文献   

5.
原煤渗透率影响因素的实验研究   总被引:1,自引:1,他引:0  
王振 《煤矿安全》2011,42(12):4-6
利用三轴渗透实验装置,进行了不同围压、不同瓦斯压力、不同温度水平下原煤试样的渗透率实验,得到了以上3种因素对渗透率的影响规律。实验结果表明:随围压的降低,渗透率逐渐增大;随着煤样中吸附瓦斯压力的增高,瓦斯气体流量则随之增大,而煤样的渗透性呈下降趋势;相比于围压和吸附瓦斯压力,温度对煤样渗透率的影响程度则大为降低。  相似文献   

6.
为了研究煤体渗透率与瓦斯压力之间的关系,以吸附瓦斯煤体变形的应力、应变研究为基础建立了煤体渗透率与瓦斯压力变化的数学模型,并在温度恒定、径向应变受到严格约束和水份不变的条件下进行了实验。采用测量不同吸附特性煤样在不同孔隙压力和不同压差条件下瓦斯渗透流量的方法测定渗透率,渗透流量测量采用排水法与气体微流量计法相结合的测量方法,将其测量结果与数学模型产生的曲线进行对比分析。研究结果表明:渗透率随瓦斯压力的变化而变化,且瓦斯压力对于不同吸附性能的煤样影响程度不同;煤样瓦斯渗透率的理论值与实验值的相对误差最大可达到8.62%。但是从总体的数据来看,理论值和实验值的变化趋势基本一致,因此,可以依据煤样的基本参数和渗透率数学模型计算出该煤样在某一瓦斯压力下的渗透率。  相似文献   

7.
含瓦斯煤热流固耦合渗流实验研究   总被引:5,自引:1,他引:4       下载免费PDF全文
以晋城煤业集团赵庄矿3号煤层的无烟煤为研究对象,运用自主研发的“含瓦斯煤热流固耦合三轴伺服渗流实验装置”,进行了恒定瓦斯压力和围压条件下含瓦斯煤热流固耦合全应力-应变瓦斯渗流实验。研究结果表明:随着煤样温度的升高,煤样的三轴抗压强度降低,承受变形的能力减小,弹性模量增大;在全应力-应变整个过程中,煤样的渗透率总体呈下降趋势;煤样渗透率小不利于采煤之前的瓦斯抽放,导致煤层深处与工作面之间的瓦斯压力梯度较大,并且高温煤样在屈服阶段的渗透率增长更快,使煤与瓦斯突出的危险性增大。煤体渗透率与应力之间的关系不是单调的随应力的增大而减小,而是要看煤体处于何种应力-应变状态。  相似文献   

8.
利用自主研制的含瓦斯煤热流固耦合三轴伺服渗流装置,对杉木树煤矿原煤试样进行了不同轴压、围压、瓦斯压力3种应力因素条件下的室内渗流实验,结果表明:当恒定瓦斯压力与围压不变时,煤样渗透率随轴压的增加而呈非线性降低,且围压越高煤样渗透率越小;当恒定瓦斯压力与轴压不变时,煤样渗透率随围压的增加而呈非线性降低,且轴压越大煤样渗透率越小;当恒定轴压与围压不变时,煤样渗透率随瓦斯压力的增加而呈非线性增加。3种应力因素对煤样渗透率的敏感度由大至小依次为:瓦斯压力、围压、轴压。3种应力因素与煤样渗透率的单因素拟合结果显示,3种应力因素与煤样渗透率均呈指数函数关系。  相似文献   

9.
煤体变形和瓦斯渗流的耦合作用是煤矿瓦斯突出机理研究中的重要问题,煤渗透率的变化与其应力状态密切相关。为了理清有效围压对煤体渗透性的影响,对煤样进行了不同瓦斯压力下全应力应变过程的渗透性实验,分析了瓦斯压力对煤样强度和渗透率的影响;针对不同瓦斯压力,设计完成了相同有效围压下三轴压缩力学实验(无瓦斯作用);并利用孔隙介质力学的分析方法,依据应力应变数据计算了煤样孔隙度。研究发现,有效围压相同条件下的煤样孔隙度计算结果与渗透率实验结果的变化趋势一致;在三轴压缩实验条件下,煤样峰值强度前的渗透率降低幅度受有效围压的控制,有效围压越高,渗透率所历经的降低幅度越大。  相似文献   

10.
沁水盆地南部煤层气井排采储层应力敏感研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为分析煤层气排采不同阶段煤储层应力敏感性及渗透率变化的影响因素,采集沁水盆地南部煤样,开展了不同实验条件的应力敏感实验。结果表明:有效应力从0增加到10 MPa时,煤样渗透率减少了50%~70%;有效应力从10 MPa增加到20 MPa时,损失量仅约占初始渗透率的10%;有效应力低于2.5 MPa时,应力敏感性较强;有效应力增加到3.5 MPa的过程中,渗透率损害系数急剧上升,渗透率损耗为20%~30%;有效应力从2.5 MPa增加到9 MPa时,应力敏感性最强,有效应力从3.5 MPa上升至9 MPa时,渗透率损害系数快速下降,渗透率损耗约60%;有效应力自9MPa之后,渗透率损害系数缓慢下降,渗透率损耗约10%;渗透率损害率介于30%~65%,临界应力为7~11 MPa。有效应力较低且不变时,煤样渗透率随孔隙压力增加而增加。围压不变时,随有效应力下降和孔隙压力增加,煤样渗透率下降,这与有效应力和孔隙压力变化引起的煤储层渗透率变化量有关。  相似文献   

11.
魏建平  王超  王登科 《煤矿安全》2012,43(12):37-40,45
通过搭建渗流实验平台,选取焦作矿区具有代表性的无烟煤型煤和原煤煤样,研究了煤体渗透性实验中型煤和原煤的差异。同时,在改变围压、气体压力等单一条件下,研究了不同围压和气体压力对型煤和原煤渗透性的影响差异;以及在固定围压和气体压力时,在施加轴向应力加载的条件下,对比分析了应力变化过程中型煤和原煤的渗透率变化。结果表明,型煤的渗透性在围压和气体压力变化时趋势相近,但在应力加载过程中有较大差异,渗流实验中煤样的选取对结果有着较大的影响。  相似文献   

12.
以淮北青东煤矿8号突出煤层煤样为研究对象,利用自行研制的径向瓦斯渗流实验系统,结合保护层卸压边界区地应力及瓦斯压力分布特征,进行变轴压、变瓦斯压力、变钻孔孔径条件下突出煤样径向瓦斯渗流试验。试验结果表明:相同轴压下,径向瓦斯渗流量随瓦斯压力增加而增加,成二次多项式关系,渗透率随瓦斯压力增加,在0~0.6 MPa内迅速降低,随后缓慢下降,并趋于稳定;相同瓦斯压力下,渗透率随覆压增加呈线性递减趋势;受钻孔卸压影响,在低轴压阶段,大孔径松软低强度试样渗透率显著高于小孔径试样的渗透率,随轴压增加,两者渗透率逐渐趋于一致。  相似文献   

13.
承压破碎煤体渗透特性参数演化实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究承压破碎煤体渗透特性参数演化规律,利用自主设计的承压破碎遗煤渗透率演化实验装置,开展了不同粒径配比煤样在不同轴压下的渗透率演化实验。实验结果表明:(1)在相同应力作用下,随着煤样粒径的增大,其渗透率逐渐变小,且较大粒径范围煤样的渗透率较小;在应力增加量相同的条件下,随着煤样粒径的增大,其渗透率的变化率越大,且混合粒径范围较大煤样渗透率的变化率均高于单一粒径或粒径范围小的煤样的变化率。(2)在较低孔隙压力范围内,煤样的渗透率均随孔隙压力的增大呈现出降低趋势,且存在一个轴压的临界值(9 MPa左右)。当轴压小于该临界值时,随着孔隙压力的增加,煤样渗透率的变化趋势更明显;而当轴压大于该临界值时,煤样渗透率的变化趋势较为平缓。(3)加载初期,随着孔隙率的减小,渗透率近似线性下降;当轴压达到9~12 MPa时,渗透率随孔隙率的下降较为平缓;继续增加轴压,渗透率随孔隙率的减小而急剧降低。  相似文献   

14.
不同瓦斯压力原煤全应力应变过程中渗透特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
煤炭地下开采过程中,常会遇到不同瓦斯赋存压力和三维受力状态等复杂条件下的煤岩体瓦斯渗透问题,为系统探究其瓦斯渗透规律,利用改进的MTS815 Flex Test GT岩石力学试验系统,开展了原煤三轴压缩全过程渗透试验,对不同瓦斯压力原煤三轴压缩全过程中渗透特性进行了探讨,分析了煤岩变形破坏过程中其瓦斯渗透特性,以及不同瓦斯压力下煤岩的瓦斯渗透特性。结果表明:煤岩瓦斯渗透率-应变曲线与煤岩三轴压缩全应力-应变曲线具有很好的对应关系,其瓦斯渗透率随加载变形破坏呈先减小后增大趋势,在峰前70%~85%应力水平时达到最小值,煤岩瓦斯渗透率在应力峰值附近时均有不同程度的急剧上升;另一方面,煤岩瓦斯渗透率和瓦斯流量随瓦斯压力的升高呈先增加后减小的趋势,瓦斯压力为1 MPa时达到最大值,在1~3 MPa时,煤岩具有较好的渗透能力,针对现场实际情况,通过类似分析,设定合理的抽采负压区间,从而保证煤与瓦斯共采安全高效进行。  相似文献   

15.
为探索煤中孔隙流体压力的变化导致渗透率的改变,引发煤渗透率压力敏感性现象,利用自主研发的出口端压力可调的三轴渗流装置,对贵州3个矿区的煤开展不同吸附性气体与不同气体压力下煤的敏感性试验研究。研究结果表明:在较低气压范围内(0~0.6 MPa),随气体压力的增加,煤渗透率下降明显,当气体压力继续上升煤的吸附作用逐渐趋于平衡,煤体骨架的吸附膨胀变形也越来越小,渗透率的下降速率逐渐减少并趋于平缓。在气体压力小于1.0 MPa时,煤渗透率损害率Dp变化较大,且随气体压力增加快速增大,表现出较强的压力敏感性。不同吸附性气体条件下,气体压力指数关系敏感系数Cp均随气体压力的增加而逐渐减小,煤渗透率对气体压力的敏感性降低。对于同一煤,在相同的条件下,CH4的气体压力乘幂关系敏感系数Sp的值最小,煤对气压的敏感性越差。乘幂关系的气体压力敏感系数Sp与渗透率损害率Dp有很好的线性相关性。  相似文献   

16.
高压气体射流破煤应力波效应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
刘勇  何岸  魏建平  刘笑天 《煤炭学报》2016,41(7):1694-1700
针对松软低透煤层中水力化增透措施存在的塌孔、抑制瓦斯解析及运移等缺点,提出采用高压气体射流破煤卸压增透的技术方法。根据热力学相关理论,计算分析了气体射流破煤应力波产生的临界当地声速及压力;并进行了高压气体射流破煤实验,高压气体射流冲击煤体时,以准静态载荷和动态载荷作用于煤体,在煤体表面形成冲蚀坑,并以应力波加载的方式在煤体内形成贯穿裂纹导致煤体破裂。通过建立应力波在煤体内传播的弥散方程,分析了孔隙率和渗透率对应力波在煤体内传播的影响。结果表明孔隙率对波速有明显的影响,应力波的衰减随孔隙率增大呈增大趋势,且在高频时应力波衰减变化更为明显;低频时渗透率对波速的影响不大,高频时,在渗透率较低时波速随着渗透率的增大逐渐增大,且波速衰减呈现先增大后减小的趋势;当渗透率大于10-11时,波速不受渗透率的影响,同时应力波也未出现衰减。  相似文献   

17.
高魁  刘泽功  刘健 《煤炭工程》2012,(3):99-101
 为了解井下煤层受采动作用的影响,原岩应力升高与降低的过程中引起的煤体瓦斯渗透特性变化规律,利用MYS-Ⅰ型煤岩样渗透率测试系统,对原煤煤样通过改变围压和瓦斯压力的方法,研究了渗透率与围压和瓦斯压力之间的关系。试验结果表明:围压对煤体渗透率的影响很大;瓦斯压力保持不变时,随着围压的增加,渗透率开始下降很快,降到一定程度之后变化缓慢;在围压保持不变时,瓦斯压力与煤样渗透率之间的关系呈先减小后增大的趋势变化。  相似文献   

18.
以平顶山低渗煤体为研究对象,研究了不同温度和瓦斯平衡压力对瓦斯的解吸速率的影响。在瓦斯解吸初期,温度和瓦斯平衡压力对解吸速率的影响程度不一,但在解吸基本平衡之后,瓦斯解吸速率随温度的增加呈正比例上升,且1.5~2.0 MPa瓦斯压力的影响程度比0.74~1.50 MPa瓦斯压力的影响程度大。  相似文献   

19.
煤储层应力敏感性及影响因素的试验分析   总被引:13,自引:0,他引:13       下载免费PDF全文
孟召平  侯泉林 《煤炭学报》2012,37(3):430-437
采用鄂尔多斯盆地东南缘高煤级煤储层样品,通过煤样的应力敏感性试验,分析了煤储层应力敏感性及有效围压、煤中裂隙和含水情况等对煤储层应力敏感性的影响。研究结果表明:煤储层渗透率随有效应力的增加按负指数函数规律降低,当有效应力从2.5 MPa增加到10 MPa时,煤样无因次渗透率为0.10~0.28,平均低于0.15,渗透率损害率为71.92%~90.14%,平均为84.59%。在有效应力小于5 MPa时,煤储层渗透率随有效应力增加快速下降,应力敏感性最强;有效应力在5~10 MPa时,渗透率随有效应力增加而较快下降,应力敏感性较强;而当有效应力大于10 MPa后,渗透率随有效应力的增加下降速度减缓,应力敏感性减弱。含裂隙煤样初始渗透率较高,且应力敏感性相对较小;但在升压过程中产生不可恢复的塑性变形大,导致降压后不可逆损害率相对较高。同样,含水煤样的渗透率随有效应力的增加而快速下降,含水条件下的应力敏感性也更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号