首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为优化含水煤层瓦斯抽采孔的布置方式,在考虑气—水两相流、应力及温度因素的基础上,建立了能够描述煤层在瓦斯抽采过程中的热流固耦合模型。以平顶山某矿工作面的相关物性参数为基础进行了数值模拟,采用COMSOL Multiphysics高效模拟软件进行科学数值计算模拟。研究得出,含水饱和度对气体的相对渗透率影响显著,而且随着抽采的进行,钻孔周边含水饱和度随之而提高,阻碍了瓦斯抽采工作的进行;在瓦斯抽采过程中,随着抽采时间的进行,压力的变化梯度逐渐变小,且呈现非线性关系;瓦斯抽采过程中需要考虑温度对其影响,温度的变化对煤层渗透率的变化有着重要的作用。故在对煤体进行水力化处理时,需要优先采用排水手段,结果表明在煤体中注入水蒸气可有效提高瓦斯抽采效率。  相似文献   

2.
基于了解煤体增透与抽采瓦斯的关系的目的,采用了液态二氧化碳致裂增透技术对煤体进行增透。对比分析了煤体增透前后抽采瓦斯的浓度和流量,得出了经过液态二氧化碳致裂增透以后的煤层平均抽采瓦斯浓度提高近3.5倍,平均抽采瓦斯流量提高3~5倍。研究结果表明:煤体增透能促使煤层裂隙发育,增加煤层透气性,提高瓦斯抽采率。  相似文献   

3.
煤层水力压裂增透技术研究与应用   总被引:2,自引:0,他引:2  
为了解决坦家冲煤矿2264-1N-S采煤工作面回风巷瓦斯浓度频繁超限问题,提高本煤层钻孔瓦斯抽采率,降低煤与瓦斯突出危险性,提出采用水力压裂增透技术提高煤层透气性.通过对压裂孔周围煤体环向拉应力进行分析,结合环向最大拉应力理论,计算得到煤体裂纹起裂临界水压为15.7 MPa.采用研制出的水力压裂设备进行现场试验后表明:单孔瓦斯抽采流量及抽采浓度均有明显提高,且煤层瓦斯流量衰减系数较低.  相似文献   

4.
为提高煤层透气性、改善抽采钻孔封孔质量,强化瓦斯抽采效果,消除煤层突出危险性,依据高压水射流破煤机理,提出"钻-割-封"技术,即对瓦斯抽采钻孔及封孔段周边煤体切割径向环形缝槽,然后注浆封孔。通过现场试验,验证采用"钻-割-封"技术钻孔的瓦斯抽采效果。现场试验结果表明:采用"钻-割-封"技术的抽采钻孔瓦斯浓度提高20%~30%,瓦斯抽采纯量相较于常规钻孔提高约1倍,实现煤层的卸压增透,提高了钻孔密封性。  相似文献   

5.
薛志鹏 《煤》2022,(9):1-4+9
常规技术与参数进行瓦斯抽采难以满足要求,故采用水冲击压裂煤层在单一低透气性煤层改善低透气性,利用冲击力二次破坏煤体使原生裂隙扩展贯通,从而提高煤体透气性。寺家庄矿15301工作面采用顺层钻孔水力压裂增渗强化抽采技术,结果表明,压裂区相较非压裂区平均瓦斯浓度与瓦斯纯量有明显提高,瓦斯浓度提高6倍。  相似文献   

6.
程欢 《现代矿业》2016,32(10):40-41
结合煤层深孔高压注水技术对顺层钻孔的瓦斯抽采机理,对薛湖煤矿2107工作面进行煤层注水工业试验,分析了煤层高压注水后的抽采效果。结果表明,高压注水使煤层裂隙发育充分,煤层透气性及煤体塑性增加;瓦斯抽放日抽采纯量增加一倍,瓦斯抽采效率明显提高;注水后煤体残留的水分也对瓦斯解吸有抑制作用;最终达到防治煤与瓦斯突出的效果,缩短了工作面消突时间,提高了工作面生产效率。  相似文献   

7.
《煤矿安全》2017,(1):5-8
为准确判断高瓦斯低透气性煤层瓦斯采动卸压抽采的有效区域,进一步提高瓦斯抽采效果,采用渗流试验和理论分析的方法,研究了煤层采动过程中煤体渗透率随应力的变化规律。结果表明:在受采动影响不同阶段,含瓦斯煤体渗透率随应力变化呈现明显的阶段差异性。在煤体弹性变形阶段,煤体渗透率随应力的增加逐步降低;在煤体达到屈服点至煤体破坏阶段,随着应力的升高,煤体发生塑性变形,煤体内产生采动裂隙,渗透率开始缓慢提升;在煤体破坏后,煤体处于卸压状态,煤体渗透率随着应力的降低大幅提升。最后,通过现场本煤层瓦斯抽采效果分析验证了采动煤体渗流特性试验结果的正确性。  相似文献   

8.
顺层钻孔瓦斯抽采半径及布孔间距研究   总被引:2,自引:0,他引:2  
为合理确定本煤层瓦斯抽采钻孔的布孔间距,通过煤层瓦斯渗流场控制方程、煤体孔隙率和渗透率耦合方程及煤层变形场控制方程,建立了钻孔抽采条件下瓦斯渗流固气耦合数学模型;采用数值模拟计算方法,得出顺层瓦斯抽采钻孔的抽采半径,并推导出瓦斯抽采钻孔布孔间距与单钻孔抽采半径的关系式。以黄岩汇矿15107工作面为应用实例,通过在该工作面进行单钻孔和多钻孔瓦斯抽采试验,求算并验证了抽采半径及布孔间距与抽采半径关系式的正确性,为现场瓦斯抽采提供科学依据。  相似文献   

9.
由于急倾斜煤层地质条件与开采工艺的特殊性,在采用水平分层开采方式时下部卸压煤体释放的大量瓦斯流向回采工作面造成安全问题。为了治理急倾斜煤层综采工作面底部煤体瓦斯的威胁,降低急倾斜煤层底部煤体瓦斯流向回采工作面的浓度,提出了将水射流割缝与高压水力压裂相结合,形成切槽定向致裂增透急倾斜煤层底部区域煤体的瓦斯高效抽采技术。在神新集团乌东煤矿北区+500 m水平45号煤层东翼南巷40—400 m至上分层+525 m水平进行了工程试验研究。讨论与分析了急倾斜煤层切槽定向致裂瓦斯高效抽采技术的增透原理与工艺流程,制定了详细的现场工程试验方案,优选出了适用于急倾斜煤层切槽定向致裂瓦斯高效抽采技术的整套工艺技术装备。研究结果表明:采用切槽定向致裂瓦斯高效抽采技术增透急倾斜煤层回采工作面底部煤体瓦斯富集区域后,切槽定向致裂钻孔在注水压力为20 MPa条件下的瓦斯抽采纯量较普通瓦斯抽采钻孔提升了6.7倍,割缝钻孔瓦斯抽采纯量较普通瓦斯抽采钻孔提升了3.0倍;增透直接扰动半径约为6 m,70 d的抽采时间内影响半径已达到8 m以上。研究结果表明应用此技术治理急倾斜煤层回采工作面底部煤体瓦斯效果明显,有效保障了上分层回采工作面的安全生产。  相似文献   

10.
针对鹤煤十矿的地质条件和瓦斯赋存情况,根据煤岩体变形理论与煤层瓦斯流动理论和煤层瓦斯一系列的假设,建立有关钻孔抽采煤层瓦斯流动气固耦合数学模型,通过COMSOL Multiphysics对抽放条件下瓦斯在煤体中的流动进行了气固耦合模拟分析,利用模拟结果得到该煤层的有效抽采半径在3个月的时间内为2.5 m,进而对现场瓦斯抽采提供理论支持,避免现场工作的盲目性,减少工程量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号