首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为控制缓斜厚煤层回采巷道围岩变形,以华盖山煤矿201工作面回风巷为工程背景,采用数值模拟方法研究了回采巷道变形破坏特征,结果显示倾斜厚煤层巷道围岩破碎区和塑性区范围较大,并且破碎区主要集中于顶板,浅部围岩为剪切-拉伸破坏,同时锚网索喷支护技术能够有效控制在该地质条件下的巷道围岩变形。工程实践表明,锚网索喷支护巷道两帮和顶底板最大移近量分别为105mm和127mm,并且现场没有出现锚杆(索)失效情况,可为类似条件下的巷道围岩控制提供参考。  相似文献   

2.
张哲  张巨峰  李文忠  胡天辉 《煤》2022,(7):5-9+33
为了解决倾斜厚煤层沿空掘巷期间动压显现剧烈,巷道支护破坏严重,维修困难等问题,通过优化巷道支护参数,布置矿压监测站,对留设不同宽度煤柱的巷道围岩表面位移、深部多点位移、顶板离层、煤帮应力、锚杆和锚索受力进行了跟踪监测。得出:巷道达到稳定状态后,煤柱宽度为6.0 m时,顶板下沉量为162 mm,两帮移近量为254 mm;煤柱宽度为8.0 m时,顶板下沉量为92 mm,两帮移近量为360 mm;煤柱宽度为9.0 m时,顶板下沉量为114 mm,两帮移近量为595 mm。结果表明:煤柱宽度为6.0 m时,围岩控制效果好,倾斜厚煤层沿空巷道立体协控技术有效地控制了巷道围岩变形。  相似文献   

3.
为解决顶煤破坏区下破碎围岩巷道变形大、破坏严重的难题,以韩咀矿32103工作面辅运巷为研究对象,采用现场实测及理论分析相结合的方法对巷道围岩应力分布及变形机理进行研究。结果表明:32103辅运巷道顶板存在的顶煤破坏区呈非连续分布,32103辅运巷道围岩应力环境调整及顶煤遗留煤柱与区段煤柱有效承载宽度减小是导致巷道矿压显现明显的主要原因。基于上述探测及理论分析结果,提出以“深浅孔注浆+锚网索”联合支护为主的巷道围岩控制技术及以“架棚+底板卸压”为主的加固技术。现场应用结果表明:采用新支护方案后,32103辅运巷道围岩最大顶底板移近量为70mm,最大两帮收敛量为48mm,支护锚杆未出现破断现象,且锚杆受力与围岩变形均在合理区间,巷道支护效果良好。  相似文献   

4.
文章针对坚硬顶板下矩形巷道断面加大后的围岩稳定性控制问题,对未支护过的大断面矩形巷道进行锚杆支护设计,介绍了扁椭圆巷道围岩破坏范围的计算方法,并对大断面矩形巷道的锚杆锚索联合支护进行计算设计,采用数值模拟探究支护后的巷道围岩变形情况,最后对巷道的围岩变形及变形速率进行现场长周期监测。数值模拟结果显示,围岩应力主要集中于顶板左右边角处。巷道围岩最大主应力和水平应力均在锚杆承力范围内。现场监测结果显示,锚杆支护后,围岩顶板最大位移158mm,两帮最大位移61mm。围岩变形相对大断面较小,并在检测周期结束时,围岩几乎不再变形。文章介绍了坚硬顶板大断面巷道锚杆支护计算方法,并通过数值模拟和现场监测验证了支护效果,可对相关巷道断面扩大围岩支护工程提供一定经验。  相似文献   

5.
为解决厚煤层大断面回采巷道围岩控制方式和岩性不匹配而造成的巷道频繁失稳,确保回采巷道设备、管线的安全通行与敷设,以庞庞塔矿为工程背景,通过数值计算分析工作面正、副巷各自支护方案下巷道围岩受力、变形与损伤特征以及锚杆(索)受力状态,发现以锚杆为基本支护可有效控制浅部围岩变形破坏;施加顶板锚索后能大幅缩小巷道顶角剪切损伤范围、增大顶板无破坏区面积。分析了支护方式提升围岩稳定性的机理,为合理优化支护参数、提高支护强度、有效控制围岩提供参考。  相似文献   

6.
针对厚煤层超高巷道围岩控制难题,以马堡煤矿152回风下山为研究对象,采用矿压观测手段,研究了巷道表面位移、顶板离层、锚杆载荷变化情况和锚杆受力情况,分析了152回风下山支护系统的合理性。结果表明,厚煤层超高巷道两帮比顶板破坏更大,巷道初期变形较为剧烈,应及时施加支护,控制围岩变形;152回风下山的锚杆锚索支护设计合理,围岩控制效果良好,能够为马堡煤矿安全生产提供保障。  相似文献   

7.
基于大柳塔煤矿52606沿空留巷技术需求,提出了厚煤层“柔模混凝土+补强支护”围岩稳定控制思路。通过理论计算得出1.2 m宽度下柔模混凝土充填墙体满足安全生产要求。基于此,采用数值模拟综合分析了0.6、1.2与1.8 m三种不同宽度柔模混凝土墙体的采动围岩应力演化及变形特征,数值计算显示:随着宽度增加,巷道顶部垂直应力增大,应力向充填墙体中部转移,且宽度为1.2 m时,留巷整体稳定性较高,巷道变形量较低。因此,确定了沿空留巷柔模混凝土充填体合理宽度为1.2 m。矿压观测结果表明,留巷期间巷道围岩整体变形较小,锚杆(索)及充填墙体工况良好,顶板未见明显裂隙发育,矿压显现不明显,保证了厚煤层工作面安全高效生产。研究对类似条件下厚煤层沿空留巷具有一定的借鉴价值。  相似文献   

8.
针对砚北煤矿27 m特厚煤层综放开采沿空掘巷技术应用的难题,采用理论分析和数值模拟方法,研究了特厚煤层综放开采沿空掘巷可行性、沿空掘巷位置、小煤柱合理宽度以及锚杆支护参数。研究结果表明:特厚煤层综放开采沿空掘巷技术上可行,小煤柱护巷为最佳掘巷方式;小煤柱合理宽度为7.6 m。锚杆支护方案为:顶板每排7根长2.4 m锚杆,帮部每排4根长2.2 m锚杆,锚杆直径均为22 mm,排距为0.8 m,顶板采用锚索补强。该技术实施效果显著,有效地控制巷道围岩的位移和变形,保障了巷道安全稳定,满足回采期间的采动影响,极大地丰富和完善了采动巷道围岩控制理论与技术。  相似文献   

9.
王伟 《江西煤炭科技》2021,(3):116-118,120
为得到8104工作面进风巷支护设计参数,采用数值模拟方法对比了3种支护方案条件下巷道围岩塑性区分布、应力分布及位移情况.数值模拟结果表明:巷道围岩应力受锚杆/索长度影响较大,增大锚杆/索长度可以有效控制巷道围岩应力集中程度,而锚杆/索预紧力对巷道围岩应力集中程度影响较小,但锚杆/索长度及预紧力在控制巷道围岩变形方面均能够起到明显作用.现场对工作面开采期间巷道围岩变形量进行监测,结果表明,巷道顶板最大移近量为93.6 mm,两帮最大移近量为70.8 mm,这说明现有支护能够较好维持巷道围岩的稳定性.  相似文献   

10.
随着煤炭开采深度的增加,采动巷道大变形、难支护、反复修复等问题较为突出。针对深部厚煤层采动巷道支护难题,采用钻孔成像仪探测深部厚煤层采动巷道围岩松动破碎区分布特征及范围,采动巷道松动破碎范围约为2.8~3.7 m,属于大松动圈不稳定围岩。开展深部厚煤层采动应力分布规律及巷道失稳特征相似材料模型试验与FLAC3D数值模拟分析,揭示工作面回采时采动应力传递规律及采动巷道围岩变形场、应力场与塑性区的分布特征,确定深部厚煤层工作面停采线距离巷道约50 m,以降低采动应力对煤层底板巷道稳定性的影响。基于理论分析及支护结构承载特性模型试验等,提出深部厚煤层采动巷道锚网索注梯级支护技术,并成功应用于郭屯煤矿-808 m水平进风大巷支护工程实践。现场矿压监测结果表明,采动巷道围岩变形持续约60 d后趋于稳定,围岩顶板最大下沉量为71~75 mm、底板最大鼓起量为63~69 mm、帮部最大内挤量为94~118 mm,未发生冒顶与片帮等事故,取得良好的支护效果。  相似文献   

11.
《煤》2021,30(9)
为保障S01轨道巷顶板围岩的稳定,采用FLAC~(3D)数值模拟软件进行锚杆索支护参数分析,根据数值模拟结果得出,顶板锚杆合理的间距和排距分别为700 mm和800 mm,帮部锚杆的合理间距和排距同顶板,顶板锚索的合理布置方式为"2-1-2",根据顶板巷道的具体特征,结合锚杆索支护参数的模拟结果具体进行支护方案设计,并在巷道掘进期间进行围岩变形监测分析。结果表明,巷道掘进期间,围岩在现有支护方案下顶板最大下沉量和两帮最大收敛量分别为15 mm和28 mm,围岩处于稳定状态。  相似文献   

12.
锚杆(索)支护掘进巷道一般采用每50 m设置围岩变形观测站和顶板离层观测站的方式进行围岩变形量、顶板离层量矿压观测,观测效率和准确性不高,尤其是长距离巷道人工矿压观测劳动强度大,差错率高。为降低长距离锚杆(索)支护巷道人工矿压观测强度,提高矿压观测效率和准确性,及时发现顶板离层量、离层速率等关键参数变化,防范顶板事故发生。陕西黄陵二号煤矿418工作面胶带巷采用在线围岩观测系统对巷道表面收敛、顶板离层、锚杆(索)受力等情况进行实时在线监测。依据监测数据分析巷道围岩变化情况,及时优化支护参数,采取可靠的顶板加固措施,有效防止了顶板事故发生。  相似文献   

13.
高尚  张延威 《山东煤炭科技》2024,(2):16-19+24+29
为解决73上16工作面运输巷工作期间围岩变形量大难支护等问题,采用理论计算及数值模拟验证73上16工作面运输巷支护设计参数(锚杆长度3.3 m、锚索长度6.2 m)合理性。结果表明:基于巷道松动圈理论,计算出巷道顶板松动圈高度为2.9 m,两帮松动圈范围为2.1 m,锚杆及锚索长度有效穿过松动圈范围;建立了考虑采空区压实效应的数值计算模型,通过数值模拟得出了巷道围岩顶板破坏是逐步发展的过程,未发生完全破坏的细砂岩层不能阻断砂质泥岩的破坏;采用该支护参数后,巷道顶板围岩塑性区破坏面积减少,变形量得到有效控制。经现场实践后,巷道顶板、底板、左帮及右帮最大位移量分别达到69 mm、58 mm、74 mm、78 mm,且巷道在服务期间未出现大变形情况。  相似文献   

14.
伯方煤矿二盘区巷道围岩为第Ⅳ类不稳定围岩,围岩压力大,矿压显现剧烈,评价巷道支护效果,在实验室取得的3号煤煤岩物理力学参数及巷道支护参数基础之上对巷道支付方式进行数值模拟分析,通过分析巷道开挖后的围岩应力、变形及破坏深度得出:巷道变形量左帮65mm、右帮66mm、顶板32mm,围岩破坏深度顶板1.5m、底板1.5m、两帮1.5m。对3211回风巷掘进工作面的围岩变形及锚杆受力监测结果说明联合支护对动压有一定的承受能力,在现有伯方煤矿巷道围岩支护情况下,围岩得到了有效地控制。  相似文献   

15.
以小西煤矿胶带巷出现的大变形破坏为研究对象,分析了变形破坏特征,得到了导致胶带巷出现大变形破坏的主要原因有高地应力、围岩岩性及原支护方式不耦合等,结合深部巷道支护特点及胶带巷所处实际地质条件,设计了"恒组大变形锚杆+普通锚网索+底板反底拱"支护方案。应用结果表明,巷道顶板变形量最大为70 mm,底板最大鼓起量为80mm,两帮最大移近量为130 mm,巷道围岩的变形情况能够满足胶带巷使用要求,该方案能够有效控制巷道围岩变形。  相似文献   

16.
宋涛  乔欣 《煤炭技术》2020,39(7):36-41
为了改善锚杆支护效果,降低巷道支护成本,根据柠条塔煤矿回采巷道实际情况,基于等效椭圆方法对回采巷道进行了支护设计,并运用ANSYS数值模拟了回采巷道开挖支护效果,初步验证了支护参数选取的合理性。通过工业试验,采用离层观测、收敛观测、钻孔窥视等手段,分别对柠条塔煤矿S1201带式输送机顺槽在掘进以及回采过成中动压的影响下顶板离层、巷道围岩变形等进行现场监测分析,监测结果显示:回采过程中顶板最大沉降量为10.4 mm,巷道的两帮最大收敛量为4 mm,现场未发现严重片帮现象;回采过程中围岩松动圈范围定为1.2 m,未超过锚杆支护长度;锚杆在工作面回采过程中受力波动增长,未超过设计值,验证了试验段内的巷道锚杆支护设计的合理性和安全性。  相似文献   

17.
《煤矿安全》2015,(8):135-137
为控制受动压影响的掘进巷道围岩变形及锚杆破断情况,分析巷道的破坏形式为典型的留煤柱沿空掘巷巷道破坏现象。经计算,选取耦合让压应力显示锚杆,规格为20 mm×2 500mm;顶锚杆排间距1 000 mm×920 mm;帮锚杆排间距1 000 mm×1 000 mm,采用新支护技术后,顶板与两帮最大移近量分别为50、90 mm,巷道围岩变形得到有效控制。  相似文献   

18.
针对煤矿巷道事故多发的的现象,通过理论计算与现场监测相结合的方式,对深井煤矿巷道稳定性进行了系统研究,分析了巷道围岩的变性破坏机理,研究了锚网索动态平衡支护技术的巷道变形规律、应力分布和巷道移近量,得出如下结论:(1)针对深井围岩巷道不稳定,动压难支护的问题,采用了锚网索动态平衡支护的支护理念;(2)通过监测数据可知,巷道断面顶板锚杆最大压力值7.2t,最大变化速率1.5t/d,位于锚杆合理区间内;巷道顶板位移量最大为43mm,两帮位移量稳定在60mm;(3)理论分析和现场实测表明,巷道顶底板锚杆受力、位移量均能满足矿井安全生产需要,对类似条件工程的支护技术具有一定理论意义和实用价值。  相似文献   

19.
张健 《煤》2021,30(5):35-37
为保障5016巷沿空掘巷时围岩的稳定,通过FLAC3D数值模拟软件进行沿空掘巷窄煤柱合理宽度的分析,通过分析巷道掘进期间煤柱和围岩变形规律,确定合理煤柱宽度为6 m,根据巷道的地质条件,设计巷道采用锚网索支护方案,巷道顶板采用全锚索支护,煤柱帮采用锚杆支护,回采帮采用锚杆+锚索支护,在巷道掘进期间进行围岩变形量的监测分析。结果表明:支护方案实施后,巷道掘进期间顶底板和两帮移近量的最大值分别为98 mm和168 mm,围岩控制效果较好。  相似文献   

20.
分析了某煤矿41盘区运输大巷的围岩特征,讨论了该巷道原有支护方案存在的问题。在此基础上,根据该盘区运输大巷围岩变形及松动圈演化规律,针对巷道顶板、两帮、底板变形特征分别对原支护方案进行了优化。在41盘区运输大巷试验段布置了2个综合监测断面和2个松动圈窥视断面,对巷道变形及锚杆(索)受力情况进行了监测。研究表明:(1)顶板离层量最大值为7.3 mm,表明顶板锚杆能够发挥支护作用,深部围岩完整性较好,未产生裂隙和离层;(2)顶板下沉量最大值为1.86 mm,两帮收敛量为13.1 mm,两帮收敛量大于顶板下沉量,说明巷道两帮锚杆支护优化后,对顶板变形的控制效果优于两帮;(3)锚杆受力最大值为25.65 k N,锚索受力最大值为32.4 k N,锚杆和锚索受力均未超过各自允许的抗拉强度。上述研究反应出,采用所提方案对该矿41盘区运输大巷进行支护后,巷道变形得到了有效控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号