首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
苏彦君  李寒旭 《广东化工》2013,(7):52-53,66
选取两淮煤矿具有代表性的2个煤样,分别与低灰熔融温度HM150煤进行相配,并通过X-射线衍射(XRD)对实验配煤煤样及其灰样中矿物组成以及相对百分含量作了分析,探讨了矿物种类及其相对百分含量对煤灰熔融温度的影响。研究得出:两淮煤其煤灰熔融温度过高的主要原因是其含有大量的高岭石和石英等矿物,石英、高岭石含量越高,煤灰熔融温度越高。配煤改善煤灰熔融温度的主要原因是它改变了原煤中的矿物组成。如要满足工业GE气化炉的运行要求,淮南煤和淮北煤均要配入比例高于50%的HM150煤。  相似文献   

2.
以高灰熔点府谷煤(A)分别与低灰熔点神木西沟煤(B)和神木河畔煤(C)按不同比例配比,用智能一体化马弗炉制成灰,用JRHR-3型微机灰熔点测定仪测定其在弱还原性气氛下的熔融特征温度,并利用XRD与CaO-SiO2-Al2O3三元相图分析配煤灰样在不同温度和不同配比下矿物组成的变化.结果表明,配煤可以有效改善煤灰熔融特性,配煤的灰熔点和煤的配比呈非线性关系;配煤的灰熔点变化主要是由于高温下矿物质的转化.  相似文献   

3.
煤灰熔融特性是影响液态排渣气化炉运行稳定性的重要因素,高熔点煤会造成气化炉排渣困难,从而导致气化炉非计划停工。为了将高灰熔融温度的朱集西煤应用于液态排渣的SE-东方炉,利用热力学软件Factsage,研究朱集西煤、神华煤、门克庆煤及朱集西-神华配煤、朱集西-门克庆配煤的煤灰熔融特性,包括全液相温度、灰渣矿物组成及煤灰黏度的变化规律。朱集西-门克庆配煤和朱集西-神华配煤的完全熔化温度分别为1 390℃和1 400℃,配煤灰熔融温度并不是单纯2种煤的灰熔融温度加和; 800℃时2种配煤中堇青石和钙长石含量较高,900℃时朱集西-神华配煤灰中出现少量尖晶石;朱集西-神华配煤在黏度为25 Pa·s时的温度为1 400℃。结果表明,朱集西-门克庆配煤可满足SE-东方炉入炉煤的煤灰流动温度要求,但其在SE-东方炉正常操作温度下灰渣黏度较大,无法顺利排出;朱集西-神华配煤在有效降低灰熔融温度的同时,改善了灰渣的黏温特性,与主体煤朱集西煤相比,灰渣黏度为25 Pa·s时的温度降低100℃,渣型由"塑性渣"变为"玻璃渣",适用于SE-东方炉。朱集西-神华配煤中熔融温度低的堇青石和钙长石含量较高,钙长石和尖晶石形成低温共熔体,是配煤灰熔融温度低的主要原因。  相似文献   

4.
Shell煤气化工艺要求使用的煤灰熔融温度低于1 350℃。但是,经灰熔融温度测定,其设计煤种灰熔点远大于目标温度。为了满足工业生产要求,可以通过配煤联合添加助熔剂的方法来降低煤灰熔点。结果表明,助熔剂ADN、ADC、ADF、KZ3#均可不同程度地降低配煤的灰熔融温度。在配煤比例一定的情况下,助熔效果为ADF>ADN>KZ3#>ADC。对于同种助熔剂,在添加量一定的情况下,助熔效果因配煤中2种煤含量的变化而异。  相似文献   

5.
配煤对煤灰熔融特性影响的实验研究   总被引:5,自引:2,他引:5  
焦发存  李慧  邓蜀平  董众兵 《煤炭转化》2006,29(1):11-14,18
高灰熔点淮南煤A分别与低灰熔点煤G和B按不同配比相配,制成两种配煤灰样,用5E-AFⅡ型智能灰熔点测定仪测定其在弱还原性气氛下的熔融特征温度,利用X射线衍射(XRD)分析了配煤灰样在不同温度和不同配比下矿物组成的变化.结果表明,配煤能有效改善煤灰熔融特性,配煤灰熔点与配比之间是非线性关系;高温下矿物形态的转变是导致配煤煤灰灰熔点变化的主要原因,莫来石有增高灰熔点的作用,石英与钙长石和铁橄榄石等矿物共存时,能够形成低熔点的共晶体使得灰熔点降低.  相似文献   

6.
太原煤分别与宁夏煤、靖远煤按不同配比制成1∶1配煤灰样,研究不同配比的配煤灰熔融特性。实验表明,配煤与原煤相比其灰熔融特性温度发生明显的变化,配比对配煤的影响不呈线性关系,致使配煤灰熔融特性温度变化的主要因素是由于在比较高的温度下矿物的形态发生转变。  相似文献   

7.
煤灰成分对煤灰熔融特性的影响   总被引:2,自引:0,他引:2  
以神木西沟煤为煤样,研究了煤灰化学成分和灰熔融性的关系,考察了灰成分对煤灰熔融温度的影响,得出了提高煤灰熔点的最佳方法.实验结果表明,添加适量的氧化物会提高煤灰的熔融温度.要使灰软化温度超过1 350℃,SiO2的添加量至少4.0%,Al2O3的添加量至少2.0%,CaO的添加量至少2.0%.从工业生产实际出发,应考虑添加CaO,Al2O3或SiO2,即添加廉价的高岭土、石灰石、蒙脱土之类的添加剂,进而扩大煤的使用范围.  相似文献   

8.
助熔剂对煤灰熔融过程中矿物行为的影响   总被引:1,自引:0,他引:1  
针对淮南矿区高灰熔融性煤难以直接用于现有液态排渣煤气化工艺的问题,利用智能灰熔点测定仪和X-射线衍射仪(XRD)在弱还原性气氛下,分别对淮南矿区煤样以及添加助熔剂后灰熔融温度和煤灰矿物行为进行了研究.结果表明,随着灰化温度的升高,高岭石转变为莫来石;碳酸盐矿物逐渐分解.助熔剂ADF和ADC在不同的温度下,容易与煤灰中其他矿物形成硬石膏、赤铁矿、铁尖晶石、铁橄榄石和钙长石等助熔矿物,从而降低煤灰熔融温度.  相似文献   

9.
宁东地区煤种灰熔融温度和灰黏度均较低,是影响宁东煤化工基地大型气流床气化技术长周期稳定运行的关键因素,用X射线衍射分析(XRD)、Factsage软件、灰熔融温度测定仪和高温黏度测定仪探讨煤灰高温灰化过程中的矿物演变,研究配煤对宁东煤矿区配煤灰熔融特性及黏温特性的影响规律。结果表明,配煤比例与灰熔融特性、灰黏温特性均呈非线性关系。石槽村样煤(SM)与麦垛山煤样(MK)质量比为2∶8时,配煤的灰熔融温度为1 300℃,灰黏度5 Pa·s,基本满足德士古气化炉用煤的煤质要求,该配煤比例下高温灰的矿物组成主要是石英。可见通过配煤可以有效改善煤灰熔融及黏温特性。  相似文献   

10.
11.
《小氮肥》2019,(12)
主要介绍了煤灰成分及矿物组成对煤灰熔融特性的影响,总结了煤灰熔融温度的预测模型,并对近年来的相关研究进展进行了总结。  相似文献   

12.
选用一种高钙和一种高硅铝新疆煤,在沉降炉中进行不同比例的混煤和单煤燃烧实验。采用计算机控制扫描电镜(CCSEM)分别对燃烧后总灰矿物成分和粒径分布进行分析。基于CCSEM分析获取单颗粒灰成分数据,采用热力学平衡方法对灰中矿物液相比例进行计算,分析混煤燃烧对灰中含钙矿物熔融特性影响。结果表明,煤中有机结合态Ca极易与煤中其他矿物元素发生交互反应,交互反应后含钙矿物种类取决于煤中内在矿种类。混煤燃烧会促进灰中含钙硅铝酸盐向含钙复杂硅铝酸盐转化,同时促进含钙矿物的熔融。在低温条件下,混烧煤灰中熔融含钙矿物粒径分布受碱金属粒径分布影响;但是高温条件下,混烧促进熔融含钙矿物向大粒径煤灰迁移。  相似文献   

13.
在灰中铁钙比(Fe2O3/Ca O)1.1的刘一煤中添加Ca CO3和还原铁粉,调节灰中铁钙比,考察铁钙比对煤灰熔融温度及渣样矿物组成的影响。结果表明,随铁钙比的增大,煤灰熔融温度逐渐降低,铁钙比5.5时,煤灰流动温度1 300℃;增大铁钙比,莫来石的生成受到了抑制,钙长石在高温下依然存在,含铁矿物进入低温共融矿物群的数量增大,显著降低灰熔融温度;降低铁钙比,高温下生成大量的高熔点矿物钙黄长石,导致灰熔融温度较高。  相似文献   

14.
张雷  李寒旭 《广东化工》2010,37(2):28-29,44
文章选用A、B两种高灰熔融温度煤为研究对象,分别添加铁系单助熔剂和复合助熔剂,利用X-射线衍射分析方法考察添加助熔剂前后不同温度下煤灰中矿物组成变化,研究铁系助熔剂对煤灰熔融温度的影响。结果表明,6%的铁系单助熔剂和4%铁系复合助熔剂均能够降低A、B煤灰熔融温度至1350℃以下,复合助熔剂改善煤灰熔融温度有较好稳定性。添加铁系助熔剂后,煤灰在升温的过程中生成的钙长石和钙铁辉石使得煤灰熔融温度降低。  相似文献   

15.
针对内蒙古HL煤种煤灰酸性成分较高、煤灰黏度较大,榆林YL煤种煤灰碱性成分较高、气化操作温度区间较窄的实际情况,通过计算煤灰碱酸比,将HL与YL按1:1的比例配煤来改善煤灰熔融特性,对配煤煤灰成分、黏温特性及物相分析的结果表明,以上两种煤种通过调配,气化操作温度适中,约1 300℃,操作温度区间较宽(大于100℃),有利于气化炉液态排渣。  相似文献   

16.
为研究MgO含量对高钠煤灰熔融特性的影响,配制了不同MgO含量的高钠合成灰并对灰熔融温度进行了测试。利用FactSage 7.0提供的热力学数据库建立了SiO2-Al2O3-Fe2O3-CaO-MgO-Na2O多元体系,模拟不同MgO含量的高钠合成灰的熔融过程。使用X射线衍射(XRD)和扫描电子显微镜(SEM)对合成灰的矿物质组成及微观形貌进行了研究。结果表明,随着MgO含量的增加,灰熔融温度先降低后升高。当MgO质量分数由0增加到5%时,高温下灰中生成大量低熔点的透辉石,透辉石会与霞石等矿物质形成低温共熔体,导致灰熔融温度降低。进一步增加MgO含量,高温下灰中生成镁黄长石、镁橄榄石和镁硅钙石等高熔点矿物质,使灰熔融温度升高。二元相图和似三元相图的结果表明,全液相温度随MgO含量的变化趋势与灰熔融温度相同。对本研究中的煤种,当MgO质量分数为30%时,可以有效提高灰熔融温度并抑制熔融液渣的生成。  相似文献   

17.
准东煤中的钠、钙含量较高,导致在燃用过程中锅炉受热面发生严重的结渣。煤灰的结渣问题与煤灰的熔融特性密切相关,灰中碱性氧化物对灰熔融特性具有重要的影响。本文综述了碱性氧化物对煤灰熔融特性的影响。现有的研究表明,添加Na_2O可以显著降低灰熔融温度,钠长石、霞石等低熔点含钠矿物质的生成及其形成的低温共熔体是灰熔融温度降低的主要原因。灰中K_2O主要以伊利石的形式存在,对灰熔融温度的影响较小。随灰中CaO和MgO含量的增加,灰熔融温度具有先降低后升高的变化趋势,矿物质熔点的变化是灰熔融温度变化的主要原因。灰中Fe_2O_3的存在形式与反应气氛有关。在还原性气氛下,铁主要以FeO的形式存在,铁橄榄石、铁尖晶石等含铁矿物质容易形成低温共熔体,使灰熔融温度降低。未来应着重研究碱性氧化物对准东煤灰熔融特性影响的机理,开发抑制准东煤结渣的高效添加剂。  相似文献   

18.
郑烨  马志斌  关彦军  张锴  程芳琴 《化工进展》2019,38(4):1714-1720
选取两种准东煤(ZDA和ZDB)为研究对象,利用灰熔融温度测定仪、X射线荧光光谱和X射线衍射仪考察了单一准东煤灰及其与煤矸石(CG)灰掺混后酸碱比、化学组成和矿物质演变对灰熔融特征温度的影响规律。结果表明高温下ZDA中主要矿物组分为霓辉石和赤铁矿等助熔矿物,而ZDB中以难熔矿物硫铝酸钙与镁硅钙石为主,导致ZDA灰熔融温度明显低于ZDB。随着CG灰质量分数增加,ZDA/CG与ZDB/CG熔融特征温度呈现先下降后上升趋势,分别在CG灰添加比40%和60%时出现最小值;当ZDA/CG与ZDB/CG酸碱比接近时,CaO与Fe2O3含量是影响变形温度与流动温度的主要原因。对于上述两种高碱性煤灰,含钙矿物对于灰熔融特性影响较大,而含钠矿物的影响相对较小。本文旨在为改善准东煤灰沉积倾向提供基础数据。  相似文献   

19.
榆林煤灰熔融特性及黏温特性   总被引:2,自引:0,他引:2       下载免费PDF全文
榆林煤灰分中钙、硫含量均很高,气流床气化过程中存在易于结渣的问题,实验室测量其黏温曲线波动性很大。 采用FactSage6.2软件计算三元平衡相图和煤灰高温熔融过程的物相变化规律,并结合XRD手段,分析了加入SiO2引起的煤灰熔融特性和黏温特性改变的机理以及黏度波动的原因。结果表明,榆林煤灰熔点随着硅铝比(S/A)、酸碱比(A/B)的增大先降低后升高;钙铝黄长石与煤灰黏温曲线波动性有较强关联,通过FactSage二元相图得出,加入SiO2至S/A=2.48可减小曲线波动性。FactSage数值计算结果与实验结果吻合良好,表明化学热力学反应平衡分析方法是研究灰渣熔融特性的一种有效手段。  相似文献   

20.
选择准东高钙五彩湾(WCW)煤作为研究对象,通过改变煤灰中硅钙摩尔比(M)研究煤灰熔融特性及矿物演变的变化规律,进一步借助FactSage热力学计算软件进行矿物平衡预测。研究表明:在WCW原煤灰中,矿物CaSO4演变生成低熔点矿物Ca2MgSi2O7,使得原煤灰借助灰熔融温度(AFTs)预测其结渣、玷污时出现较大偏差。对于混煤灰,当M升高至3时,相比原煤灰,其中矿物CaSO4的分解提前,SiO2优先与CaO反应生成熔点较低的矿物CaMgSi2O6,进而引起混煤灰的熔点降低;当混煤灰中M升高至5时,充足的SiO2会与MgO发生反应,生成高熔点矿物Mg2SiO4,使得此时混煤灰的AFTs显著提升,改善了煤灰熔融特性。热力学计算矿物平衡结果与X射线衍射分析(XRD)结果吻合较好,吉布斯自由能结果验证了矿物演变过程的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号