首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
通过有限元空间和有限体积元空间的一种双射投影得到了不可压缩流问题低次等阶稳定有限体积元方法.该方法采用低次等阶元P1-P1(或Q1-Q1)对Navier-Stokes(N-S)方程进行数值求解,利用局部压力投影技术进行稳定化处理.通过有限元和有限体积元方法的等价性进行有限体积元方法的理论分析.发现不可压缩流N-S问题在f∈H~1时,稳定有限体积元方法与稳定有限元方法之间具有O(|logh|~(1/2)/h~2)阶超收敛逼近结果.将稳定有限体积算法的三种两重网格格式进行了比较分析,发现当粗、细网格尺度比例选取适当时,两重算法具有传统算法相同的收敛速度,而两重算法具有明显的效率优势,并且Simple格式速度最快,Picard格式更适合较小粘性系数问题的数值求解.  相似文献   

2.
研究了三维对流扩散方程基于有限差分法的多重网格算法。差分格式采用一般网格步长下的二阶中心差分格式和四阶紧致差分格式,建立了与两种格式相适应的部分半粗化的多重网格算法,构造了相应的限制算子和插值算子,并与传统的等距网格下的完全粗化的多重网格算法进行了比较。数值研究结果表明,对于各向异性问题,一般网格步长下的部分半粗化多重网格算法比等距网格下的完全粗化多重网格算法具有个更高的精度和更好的收敛效率。  相似文献   

3.
运用非定常Navier-Stokes(N-S)方程有限体积算法及非结构动网格技术对X-37B飞行器着陆流场进行数值模拟,比较了飞行器在拖挂阻力伞和不拖挂阻力伞两种情况下的流场差异.模拟以混合网格有限体积方法为基础,控制体方程采用N-S方程组,流场计算空间离散采用格点格式,通量计算格式采用Roe,时间离散采用LU-SGS理论和二阶时间精度的双时间步长,湍流模型采用两方程SST湍流模型.动网格技术采用线性弹簧理论处理阻力伞在摆动时流场的变化.阻力伞模型采用中间带气孔的C-9圆锥型降落伞外形,但规模有所缩小,以便适应飞行器.模拟比较了两种情况下着陆流场的差别,并主要比较了两种情况下阻力的差别,从而证明飞行器在拖挂阻力伞的情况下更容易减速着陆.  相似文献   

4.
该文简要叙述了混合有限体积方法的相关结论,主要是三角和四边形网格上的基于一套网格剖分的混合有限体积法,同时列出了相应格式的收敛性结果。  相似文献   

5.
二维非结构网格的非振荡有限体积方法   总被引:2,自引:0,他引:2  
1.引言 自从1983年Harten提出了TVD格式后,高分辨率有限差分方法(TVD,ENO等)在计算流体力学领域已经得到了广泛的应用,并取得了很好的计算效果,但对几何形状非常复杂的计算问题,有限差分方法有一定的局限性.非结构网格有限体积方法可以计算任何几何形状的二,三维问题,所以对非结构网格以及有限体积方法的研究越来越受到人们的重  相似文献   

6.
针对多介质各向异性扩散方程,本文设计了一种非结构多边形网格高精度有限体积计算格式.为了能适应网格大变形,在构造格式框架时除了用到单元中心量外还引入了节点量作为中间变量,并通过推广孪生逼近算法于各向异性扩散系数情形消除节点量,使算法回归于单元中心量计算流程.数值算例表明,该方法能较好适应大变形网格及间断系数各向异性扩散方程计算.  相似文献   

7.
一类Lagrange坐标系下的ENO有限体积格式   总被引:1,自引:0,他引:1  
本文首先从积分形式的二维Lagrange流体力学方程组出发,使用ENO高阶插值多项式,推广了四边形结构网格下的一阶有限体积格式,构造得到了一类结构网格下的高精度有限体积格式.该格式针对单介质问题具有良好的计算效果,同时在处理多介质问题时,不会产生物质界面附近强烈的震荡.结合有效的守恒重映方法,用ALE方法进行数值模拟,得到了预期的效果.  相似文献   

8.
用等分弧长函数来控制网格剖分,用迎风有限差分格式来求解一类奇异摄动两点边值问题的自适应算法。本文用了的数值试验证明了算法的可行性和高效性。  相似文献   

9.
针对非结构网格隐式算法在GPU上的加速效果不佳的问题,通过分析GPU的架构及并行模式,研究并实现了基于非结构网格格点格式的隐式LU-SGS算法的GPU并行加速.通过采用RCM和Metis网格重排序(重组)方法,优化非结构网格的数据局部性,改善非结构网格的隐式算法在GPU上的并行加速效果.通过三维机翼算例验证了本文实现的正确性及效率.结果表明两种网格重排序(重组)方法分别得到了63%和69%的加速效果提高.优化后的LU-SGS隐式GPU并行算法获得了相较于CPU串行算法27倍的加速比,充分说明了本文方法的高效性.  相似文献   

10.
基于快速显式算子分裂方法,将Cahn-Hilliard方程与分子束外延(MBE)方程分裂为非线性与线性两个部分.对非线性部分,采用中心差分与半离散有限差分两种格式进行数值计算;线性部分通过拟谱方法进行精确求解.在两种格式下,通过对数值解的全局L~∞误差估计,比较分析了两种格式的数值解差异以及运行效率.对于Cahn-Hilliard方程与MBE方程,两种格式的数值解一致;对Cahn-Hilliard方程的数值求解,中心差分格式的效率是半离散有限差分格式的3到6倍;在MBE方程的数值求解中,半离散有限差分格式的效率是中心差分格式的2倍.  相似文献   

11.
In this paper a novel method for simulating unsteady incompressible viscous flow over a moving boundary is described. The numerical model is based on a 2D Navier–Stokes incompressible flow in artificial compressibility formulation with Arbitrary Lagrangian Eulerian approach for moving grid and dual time stepping approach for time accurate discretization. A higher order unstructured finite volume scheme, based on a Harten Lax and van Leer with Contact (HLLC) type Riemann solver for convective fluxes, developed for steady incompressible flow in artificial compressibility formulation by Mandal and Iyer (AIAA paper 2009-3541), is extended to solve unsteady flows over moving boundary. Viscous fluxes are discretized in a central differencing manner based on Coirier’s diamond path. An algorithm based on interpolation with radial basis functions is used for grid movements. The present numerical scheme is validated for an unsteady channel flow with a moving indentation. The present numerical results are found to agree well with experimental results reported in literature.  相似文献   

12.
The work deals with numerical solution of the Navier–Stokes equations for incompressible fluid using finite volume and finite difference methods. The first method is based on artificial compressibility where continuity equation is changed by adding pressure time derivative. The second method is based on solving momentum equations and the Poisson equation for pressure instead of continuity equation. The numerical solution using both methods is compared for backward facing step flows. The equations are discretized on orthogonal grids with second, fourth and sixth orders of accuracy as well as third order accurate upwind approximation for convective terms. Not only laminar but also turbulent regimes using two-equation turbulence models are presented.  相似文献   

13.
Numerical methods and simulation tools for incompressible flows have been advanced largely as a subset of the computational fluid dynamics (CFD) discipline. Especially within the aerospace community, simulation of compressible flows has driven most of the development of computational algorithms and tools. This is due to the high level of accuracy desired for predicting aerodynamic performance of flight vehicles. Conversely, low-speed incompressible flow encountered in a wide range of fluid engineering problems has not typically required the same level of numerical accuracy. This practice of tolerating relatively low-fidelity solutions in engineering applications for incompressible flow has changed. As the design of flow devices becomes more sophisticated, a narrower margin of error is required. Accurate and robust CFD tools have become increasingly important in fluid engineering for incompressible and low-speed flow. Accuracy depends not only on numerical methods but also on flow physics and geometry modeling. For high-accuracy solutions, geometry modeling has to be very inclusive to capture the elliptic nature of incompressible flow resulting in large grid sizes. Therefore, in this article, implicit schemes or efficient time integration schemes for incompressible flow are reviewed from a CFD tool development point of view. Extension of the efficient solution procedures to arbitrary Mach number flows through a unified time-derivative preconditioning approach is also discussed. The unified implicit solution procedure is capable of solving low-speed compressible flows, transonic, as well as supersonic flows accurately and efficiently. Test cases demonstrating Mach-independent convergence are presented.  相似文献   

14.
W. Zhang  G. Xi 《Computers & Fluids》2010,39(1):178-188
The two-dimensional steady incompressible Navier-Stokes equations in the form of primitive variables have been solved by Chebyshev pseudospectral method. The pressure and velocities are coupled by artificial compressibility method and the NS equations are solved by pseudotime method with an explicit four-step Runge-Kutta integrator. In order to reduce the computational time cost, we propose the spectral multigrid algorithm in full approximation storage (FAS) scheme and implement it through V-cycle multigrid and full multigrid (FMG) strategies. Four iterative methods are designed including the single grid method; the full single grid method; the V-cycle multigrid method and the FMG method. The accuracy and efficiency of the numerical methods are validated by three test problems: the modified one-dimensional Burgers equation; the Taylor vortices and the two-dimensional lid driven cavity flow. The computational results fit well with the exact or benchmark solutions. The spectral accuracy can be maintained by the single grid method as well as the multigrid ones, while the time cost is greatly reduced by the latter. For the lid driven cavity flow problem, the FMG is proved to be the most efficient one among the four iterative methods. A speedup of nearly two orders of magnitude can be achieved by the three-level multigrid method and at least one order of magnitude by the two-level multigrid method.  相似文献   

15.
This paper investigates the applicability of the stencil-adaptive finite difference method for the simulation of two-dimensional unsteady incompressible viscous flows with curved boundary. The adaptive stencil refinement algorithm has been proven to be able to continuously adapt the stencil resolution according to the gradient of flow parameter of interest [Ding H, Shu C. A stencil adaptive algorithm for finite difference solution of incompressible viscous flows. J Comput Phys 2006;214:397-420], which facilitates the saving of the computational efforts. On the other hand, the capability of the domain-free discretization technique in dealing with the curved boundary provides a great flexibility for the finite difference scheme on the Cartesian grid. Here, we show that their combination makes it possible to simulate the unsteady incompressible flow with curved boundary on a dynamically changed grid. The methods are validated by simulating steady and unsteady incompressible viscous flows over a stationary circular cylinder.  相似文献   

16.
A stabilized finite point method (FPM) for the meshless analysis of incompressible fluid flow problems is presented. The stabilization approach is based in the finite increment calculus (FIC) procedure developed by O?ate [14]. An enhanced fractional step procedure allowing the semi-implicit numerical solution of incompressible fluids using the FPM is described. Examples of application of the stabilized FPM to the solution of two incompressible flow problems are presented. Received: 30 June 1999 / Accepted: 21 September 1999  相似文献   

17.
A compact difference scheme is developed for the streamfunction-velocity formulation of the steady incompressible Navier–Stokes equations in polar coordinates, which is of second-order accuracy and carries streamfunction and its first derivatives (velocities) as the unknown variables. Numerical examples, including the biharmonic problem with an analytic solution in the unit circular region, the flow past an impulsively started circular cylinder, the driven polar cavity flow and the wall-driven semi-circular cavity flow problems, are solved by the present method. Compared with the existing values by different available numerical methods and experiments in the literature, numerical results demonstrate the accuracy and efficiency of the currently proposed scheme.  相似文献   

18.
A high-order accurate finite difference scheme is used to perform numerical studies on the benefit of high-order methods. The main advantage of the present technique is the possibility to prove stability for the linearized Euler equations on a multi-block domain, including the boundary conditions. The result is a robust high-order scheme for realistic applications. Convergence studies are presented, verifying design order of accuracy and the superior efficiency of high-order methods for applications dominated by wave propagation. Furthermore, numerical computations of a more complex problem, a vortex-airfoil interaction, show that high-order methods are necessary to capture the significant flow features for transient problems and realistic grid resolutions. This methodology is easy to parallelize due to the multi-block capability. Indeed, we show that the speedup of our numerical method scales almost linearly with the number of processors.  相似文献   

19.
In this study, an efficient numerical method is proposed for unifying the structured and unstructured grid approaches for solving the potential flows. The new method, named as the “alternating cell directions implicit - ACDI”, solves for the structured and unstructured grid configurations equally well. The new method in effect applies a line implicit method similar to the Line Gauss Seidel scheme for complex unstructured grids including mixed type quadrilateral and triangle cells. To this end, designated alternating directions are taken along chains of contiguous cells, i.e. ‘cell directions’, and an ADI-like sweeping is made to update these cells using a Line Gauss Seidel like scheme. The algorithm makes sure that the entire flow field is updated by traversing each cell twice at each time step for unstructured quadrilateral grids that may contain triangular cells. In this study, a cell-centered finite volume formulation of the ACDI method is demonstrated. The solutions are obtained for incompressible potential flows around a circular cylinder and a forward step. The results are compared with the analytical solutions and numerical solutions using the implicit ADI and the explicit Runge-Kutta methods on single-and multi-block structured and unstructured grids. The results demonstrate that the present ACDI method is unconditionally stable, easy to use and has the same computational performance in terms of convergence, accuracy and run times for both the structured and unstructured grids.  相似文献   

20.
This work is concerned with the analysis of time integration procedures for the stabilised finite element formulation of unsteady incompressible fluid flows governed by the Navier–Stokes equations. The stabilisation technique is combined with several different implicit time integration procedures including both finite difference and finite element schemes. Particular attention is given to the generalised-α method and the linear discontinuous in time finite element scheme. The time integration schemes are first applied to two model problems, represented by a first order differential equation in time and the one dimensional advection–diffusion equation, and subjected to a detailed mathematical analysis based on the Fourier series expansion. In order to establish the accuracy and efficiency of the time integration schemes for the Navier–Stokes equations, a detailed computational study is performed of two standard numerical examples: unsteady flow around a cylinder and flow across a backward facing step. It is concluded that the semi-discrete generalised-α method provides a viable alternative to the more sophisticated and expensive space–time methods for simulations of unsteady flows of incompressible fluids governed by the Navier–Stokes equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号