共查询到18条相似文献,搜索用时 125 毫秒
1.
使用AlexNet实现胃肿瘤细胞图像分类时,存在数据集过小和模型收敛速度慢、识别率低的问题。针对上述问题,提出基于径向变换(RT)的数据增强(DA)和改进AlexNet的方法。将原始数据集划分为测试集和训练集,测试集采用剪裁方式增加数据,训练集首先采用剪裁、旋转、翻转和亮度变换得到增强图片集;然后选取其中一部分进行RT处理达到增强效果。此外,采用替换激活函数和归一化层的方式提高AlexNet的收敛速度并提高其泛化性能。实验结果表明,所提方法能以较快的收敛速度和较高的识别准确率实现胃肿瘤细胞图像的识别,在测试集中最高准确率为99.50%,平均准确率为96.69%,癌变、正常和增生三个类别的F1值分别为0.980、0.954和0.958,表明该方法较好地实现了胃肿瘤细胞图像的识别。 相似文献
2.
针对胃粘膜肿瘤细胞图像的高维性、不规则性及复杂性的特点,常用的分类方法识别率不高。为了提高识别率,本文提出了一种基于量子自组织特征映射神经网络(quantum self-organization feature mapping neural networks, QSOFM)的胃粘膜肿瘤细胞图像识别方法。该方法将经过主成分分析(Principal Component Analysis,PCA)降维后的图像样本输入到QSOFM中,对其进行无监督和有监督相结合的训练,使得每类胃粘膜肿瘤细胞图像对应精确和唯一的神经元,以此达到将胃粘膜肿瘤细胞图像分为癌、增生、正常三类细胞。实验结果表明,该识别方法在识别率和可靠性方面达到了良好的效果,相比于其他分类算法在识别率上有较大程度的提高,体现出QSOFM在图像识别领域的应用潜力。 相似文献
3.
针对目前入侵检测系统误报率过高、检测率不高和对未知入侵检测能力有限的缺陷,提出一种动态SOFM的网络入侵检测方法,定义了聚类节点信任度,并根据竞争结果、信任度、中心相似度,制定节点的增删策略,提升聚类效果。使用KDD99数据集进行实验,结果表明系统在保持误报率低的情况下,入侵检测率有所提高。 相似文献
4.
基于SOFM网络的聚类分析 总被引:7,自引:1,他引:7
基于自组织特征映射网络的聚类分析,是在神经网络基础上发展起来的一种新的非监督聚类方法,分析了基于自组织特征映射网络聚类的学习过程,分析了权系数自组织过程中邻域函数和学习步长的一般取值问题,给出了基于自组织特征映射网络聚类实现的具体算法,并通过实际示例测试,证实了算法的正确性。 相似文献
5.
为提高传统压缩感知(CS)恢复算法的抗噪性能,结合观测矩阵优化和自适应观测的思想,提出一种自适应压缩感知(ACS)算法。该算法将观测能量全部分配在由传统CS恢复算法估计的支撑位置,由于估计支撑集中包含支撑位置,这样可有效提高观测信噪比(SNR);再从优化观测矩阵的角度推导出最优的新观测向量,即其非零部分设计为Gram矩阵的特征向量。仿真结果表明,随着观测数增大,Gram矩阵非对角元素的能量增速小于传统CS算法,并且分别在观测次数、稀疏度和SNR相同的条件下,所提算法的重构归一化均方误差低于传统CS恢复算法10 dB以上,低于典型的贝叶斯方法5 dB以上。分析表明,所提自适应观测机制可有效提高传统CS恢复算法的能量利用效率和抗噪性能。 相似文献
6.
基于SOFM神经网络的数字模式识别方法 总被引:3,自引:0,他引:3
以一维空间自组织特征映射网络为识别模型,采用两级识别的方法,提出了一种基于自组织网络的数字识别方法,仿真结果表明此方法具有识别率高、识别速度快的优点,具有广阔的应用前景。 相似文献
7.
8.
提出了一种基于增量式拉普拉斯嵌入和支持向量机的图像识别方法,该方法首先利用增量式拉普拉斯特征映射对数据点进行维数约减和特征提取;再应用以统计学习理论为基础的支持向量机对图像进行分类识别.在降维过程中,该方法能够最优保持原始空间数据点的局部信息,克服了PCA降维算法从全局考虑而丢失局部信息的缺点,并且对测试集的嵌入坐标增量式计算的特点很好地减少了运算量.实验证明,该方法的图像识别率明显高于传统的PCA线性降维方法,具有可行性. 相似文献
9.
王斌 《计算机技术与发展》2003,13(8)
以一维空间自组织特征映射网络为识别模型,采用两级识别的方法,提出了一种基于自组织网络的数字识别方法,仿真结果表明此方法具有识别率高、识别速度快的优点,具有广阔的应用前景. 相似文献
10.
针对目前入侵检测系统误报率过高、检测率不高和对未知入侵检测能力有限的缺陷,提出一种基于模糊SOFM的网络入侵检测方法,经训练后可形成一个稳定的神经网络系统,有效地识别网络正常行为和异常行为。采用KDD99数据集对系统进行实验,结果表明,系统在保持误报率低于3%的情况下,入侵检测率最高可以达到92%以上。 相似文献
11.
12.
13.
传统的飞机目标识别算法一般是通过目标分割,然后提取不变特征进行训练来完成目标的识别。但是,对于实际情况比较复杂的遥感图像飞机目标,至今没有一种适合多种机型的分割和识别算法。针对现有识别算法的不足,本研究提出一种基于特征点空间分布、颜色不变矩和Zernike不变矩相结合的遥感图像飞机目标识别算法。方法:首先,对预处理后的遥感图像和模板图像进行小波变换,在低分辨率图像下采用圆投影特征进行粗匹配,确定候选目标;粗匹配结束后,提取高分辨率图像的多尺度Harris-laplace角点,并画出Delaunay三角网,同时提取出颜色不变矩和Zernike不变矩;然后使用欧氏距离作为这三种特征的相似性度量,并和样本图像进行加权匹配;最后选取欧式距离最小的图像作为最终的识别目标。结果:实验表明,本文算法飞机检测精度比现有算法高2.2%,飞机识别精度比现有算法高1.4%-10.4%。该算法能从遥感图像中精确识别出十大飞机目标,并对背景、噪声、视角变化等多种干扰具有良好的鲁棒性。结论:提出了一种基于特征点空间分布、颜色不变矩和Zernike不变矩相结合的飞机识别算法,该算法使用了图像的多种信息,包括特征点和不变矩,有效地克服了使用单一特征无法描述多种信息的不足。实验结果表明,本文采用基于特征点和不变矩的飞机识别算法比其他算法具有更强的抗干扰能力和识别精度。 相似文献
14.
测量矩阵的构造算法是压缩感知中重要的研究方向之一。提出一种基于Logistic混沌-贝努利序列(Chaos-Bernoulli)测量矩阵构造算法,该算法利用了混沌序列良好的伪随机性质,通过一维Logistic混沌系统产生混沌序列,再通过符号函数生成具有贝努利分布的伪随机序列从而构造出压缩感知测量矩阵。实验仿真结果表明,该算法优于贝努利随机测量矩阵,信号重构的峰值信噪比PSNR有1~3 dB的提高,并与其他类型的测量矩阵进行比较,数值分析结果证明该算法是可行有效的。 相似文献
15.
远程无线心电实时监护系统的心电采集终端基于嵌入式设备开发,系统资源和网络带宽都收到限制,这要求系统设计具有低功耗和数据实时压缩的功能,因此引入压缩感知算法对心电信号进行处理。压缩感知算法具有编码计算简单快速,解码计算相对复杂的特点。对于心电信号,需要对压缩感知算法在实时心电压缩系统中的可行性进行研究。 相似文献
16.
针对目前MRI脑图像分割算法在图像分割速度和精度上不理想的问题,提出了一种将平衡多小波分析与SOFM相结合的BMSOFM算法。该算法在对MRI脑图像进行平衡多小波分析的基础上,用SOFM对图像聚类,最终得到分割结果。对不同分辨率的MRI脑图像的仿真实验表明,在高分辨率的情况下,BMSOFM不但加快了分割的速度,而且提高了聚类精确度,分割效果得到明显改善。 相似文献
17.
针对常见混沌映射随机性不高、序列元素相关性较强、构造测量矩阵元素需间隔采样来满足数据统计的独立性等问题,通过级联量子Logistic混沌系统和广义Fibonacci数列构造一种新的复合混沌系统.在信息熵、空间特性和相关系数等方面对不同混沌测量矩阵进行定量分析,验证了提出的混沌系统具有遍历性和很强的混沌特性要求,序列元素... 相似文献