首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Yadav  Suneel 《Wireless Networks》2019,25(6):3133-3147

We study the effect of imperfect channel estimation (ICE) and asymmetric traffic requirements (ATRs) on the performance of bidirectional relaying with a direct link by employing three-phase analog network coding under Nakagami-m fading. Under such a realistic scenario, a tight lower bound on the overall outage probability is derived in closed-form, while a useful expression is presented for the asymptotically low outage regime. We also deduce the tight closed-form expression for the ergodic sum-rate. Furthermore, we formulate and solve analytically three optimization problems viz., relay power allocation under fixed location of the relay, relay position with fixed relay power allocation, and joint optimization of relay power allocation and location. Our results reveal that for given ICE, the optimal relay location offers significant system performance enhancement under ATRs, whilst the optimal relay power allocation has a more noticeable impact under symmetric traffic. It is also shown that the joint optimization of relay power allocation and location can further enhance the system performance, regardless of ATRs and ICE. Above all, based on the direct link quality, we show that the considered scheme outperforms its two-phase counterpart, even in the low signal-to-noise ratio regime.

  相似文献   

2.
Outage performance is analyzed for opportunistic decode‐and‐forward cooperative networks employing orthogonal space–time block codes. The closed‐form expressions of diversity order and the end‐to‐end outage probability at high signal‐to‐noise ratio regime are derived for arbitrary relay number (K) and antenna configuration (N antennas at the source and each relay, ND antennas at the destination) under independent but not necessarily identical Rayleigh fading channels. The analysis is carried out in terms of the availability of the direct link between the source and the destination. It is demonstrated that the diversity order is min{N, ND} ⋅ KN if the direct link is blocked, and if the direct link is available, the diversity order becomes min{N, ND} ⋅ KN + NND. Simulation and numerical results verify the analysis well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we study end-to-end performance of transmit antenna selection (TAS) and maximal ratio combining (MRC) in dual hop amplify-and-forward relay network in flat and asymmetric Nakagami-m fading channels. In the network, source and destination communicate by the help of single relay and source-destination link is not available. Source and destination are equipped with multiple antennas, and relay is equipped with single antenna. TAS and MRC are used for transmission at the source and reception at the destination, respectively. The relay simply amplifies and forwards the signal sent by the source to the destination by using channel state information (CSI) based gain or fixed gain. By considering relay location, for CSI based and fixed relay gains, we derive closed-form cumulative distribution function, moments and moment generating function of end-to-end signal-to-noise ratio, and closed-form symbol error probability expression. Moreover, asymptotical outage probability and symbol error probability expressions are also derived for both CSI based and fixed gains to obtain diversity order of the network. Analytical results are validated by the Monte Carlo simulations. Results show that diversity order is minimum of products of fading parameter and number of antennas at the end in each hop. In addition, for optimum performance the relay must be closer to the source when the diversity order of the first hop is smaller than or equal to that of the second hop.  相似文献   

4.
This paper investigates the secrecy outage probability (SOP) and intercept behavior for the amplify‐and‐forward network over Nakagami‐m fading channels. Relay selection schemes are evaluated. The optimal and suboptimal criterions require the instantaneous and statistical channel state information of the eavesdroppers' channels, respectively. The enhanced 2‐hop criterion needs the additional information of the target secrecy rate for relay selection. Theoretical analysis reveals that the diversity order of the SOP is dominated by the minimum fading figures of the source‐relay and relay‐destination channels, while that of the intercept probability depends on the fading figure of the relay‐destination channel. In the multirelay scenario, the optimal, suboptimal, and enhanced 2‐hop scheme achieve the same diversity orders of the SOP. For the intercept probability, the optimal and second‐hop relay selection schemes provide the same diversity order, while the diversity orders of the suboptimal and enhanced 2‐hop schemes are the same. Simulation results finally substantiate the accuracy of the theoretical analysis.  相似文献   

5.
In this paper, we analyze the performance of cognitive amplify‐and‐forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi‐antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information‐assisted AF mode, and the signals undergo independent Nakagami‐m fading. In particular, closed‐form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami‐m fading are presented. More importantly, asymptotic closed‐form expressions for the outage probability and SER are derived. These tractable closed‐form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, bit error probability (BEP), outage probability (OP) and channel capacity (CC) of direct-sequence code-division multiple access systems with amplify-and-forward relaying are presented for different fading scenarios. In the first scenario, the source-destination link is assumed to experience Rayleigh fading while it is subject to Nakagami-m fading in the second scenario. The source-relay and relay-destination channels are considered to have Nakagami-m fading conditions in two scenarios. First, analytical expressions for the end-to-end probability density function (PDF) are derived by using the convolution integral. Then, BEP, OP and CC are obtained based on these PDFs in terms of infinite series. Truncation error analyses are presented for different parameter values in order to show that truncation error arising from the infinite series is negligible. Simple and easy-to-compute asymptotic expressions are also introduced for BEP and OP in order to simplify the performance analysis in high signal-to-noise ratio region. Simulation results are provided to show the accuracy of the proposed approximate and asymptotic expressions.  相似文献   

7.
In this paper, the performance of amplify-and-forward (AF) cooperative diversity is analyzed over asymmetric fading channels. The source–relay and the relay–destination links experience Rayleigh fading while the source–destination link is subject to generalized Gamma fading. First, the probability density function (PDF) and the moment generating function (MGF) of the source–relay–destination link and the MGF of the source–destination link are derived. Then, the symbol error rate (SER) is determined based on the MGF of the total end-to-end signal-to-noise ratio (SNR). Moreover, the SER performance of N-relay assisted AF cooperative diversity is illustrated for M-ary phase shift keying (M-PSK) and M-ary quadrature amplitude modulation (M-QAM). Based on the derived MGF expressions, the numerical results are obtained by varying the modulation types and channel parameters for different scenarios.  相似文献   

8.
In this paper, the cognitive relay cooperation (CRC) wireless communication systems are investigated over Nakagami‐m fading channels. The decode‐and‐forward (DF) relay is employed to assist the communications between cognitive source and destination. Especially, to achieve full diversity order, we consider the case in which there is a direct path between cognitive source and destination. Besides the interference at primary users (PUs) created by secondary users (SUs), the interference at SUs created by PUs is also considered. For the interested CRC systems, we first achieve the exact expression for the CDF of the equivalent end‐to‐end signal‐to‐interference ratio (SIR) of CRC systems. Then, with the exact CDF, the exact average symbol error ratio (SER) and outage performance of CRC systems are achieved. The derivation is of significance, by which we can obtain a detailed knowledge about CRC systems. Though a single integral included in the derivation, it can be calculated numerically by employing some mathematical tools such as Matlab. At the same time, to obtain the insight and highlight the effect of system parameters on the considered CRC systems, by using the high SIR approximation, we obtain the asymptotic closed‐form expression of CDF as well as the ones of average SER and outage probability. From the asymptotic results, we can find the main factors that dominate the performance of CRC systems. The presented simulation results for outage probability and average SER show the derivations and simulations are in agreement. Moreover, in high SIR the achieved asymptotic results match well the exact ones. As a result, in high SIR we can employ the asymptotic closed‐form solutions to evaluate the exact performance of CRC systems. This can reduce greatly the implementation complexity. Besides this, the simulations also show that the diversity order is dominated by the fading severities of the secondary systems, i.e. the diversity order be proportional to the summation of the minimum fading severity between the two hops and that of the direct link. In contrast, the parameters of the primary systems only affect the coding gain, not the diversity gain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Full duplex (FD) technique has evolved as a viable solution to address the spectrum scarce issue. It has gained research interest for its potential to double the wireless link capacity and enhance spectral efficiency (SE). In this paper, the end-to-end performance of an amplify-and-forward full duplex relay(FDR) in asymmetric Rayleigh–Rician fading channels is explored, unlike the other works that assume symmetric fading conditions in both the links. The asymmetric or mixed fading channels properly model the realistic communication scenarios like satellite/terrestrial wireless communication systems. In this work, we consider that the source-relay link experiences Rayleigh fading and the relay-destination link experiences Rician fading. The novel exact and lower bound closed form analytical expressions for outage probability (OP) and bit error rate (BER) for the considered FD system are derived. Moreover, the effect of severity of fading and the amount of residual self-interference (RSI) on the performance of FDR are also studied. In addition, MC simulations are carried out to validate the results. It is observed that the performance metrics, OP and BER, are highly dependent on the severity of fading and the amount of RSI. Furthermore, it is found that typically at the SNR of 10 dB, an improvement of approximately 27.6% in OP is obtained. Also, our work offers appreciable SNR gain, for example, for a BER of 10−2, an SNR improvement of around 11 dB is achieved. These findings have been compared with the mixed Rayleigh–Rician fading channel conditions considering only half duplex(HD) mode. These parameter metrics are helpful in analyzing the performance of FD in various communication scenarios such as LoS/NLoS conditions and hence pave the way for more realistic FDR.  相似文献   

10.
Relaying communications has been proposed as a way to provide spatial diversity. In general, one is interested in a relaying system that can achieve the maximal diversity order with a low system complexity. One enabling technique is equal gain combining (EGC) and its application in relaying systems is the main focus of this paper. In particular, the techniques of EGC and smart relaying are combined in the decode-and-forward (DF) processing method. It is shown that for a system with one relay and M-ary phase-shift-keying (M-PSK) modulation, maximal diversity orders of 2m and 2 are achieved over Nakagami-m and Hoyt fading environments, respectively. With K relays, simulation results suggest that the corresponding diversity orders are m(K?+?1) and (K?+?1).  相似文献   

11.
Cooperative diversity systems have recently been proposed as a way to form virtual antenna schemes without utilizing collocated multiple antennas. In this paper, we consider the Nth best opportunistic amplify‐and‐forward (AF) cooperative diversity systems. The AF type can be regarded as one on the basis of modified channel state information. Wireless channels between any pair of nodes (i.e., direct and dual hop links) are assumed quasi‐static independent and nonidentically distributed (INID) Rayleigh fading. The best opportunistic AF (OAF) scheme requires two phases of transmission. During the first phase, the source node transmits a signal to all relays and the destination. In the second phase, the best relay is only selected on the basis of highest signal‐to‐noise ratio (SNR) scheme to forward the source signal to the destination. Therefore, the indirect link (i.e., source‐selected relay destination) can give the highest received SNR. However, the best relay selection cannot be available so that we might choose the second, third, or generally the Nth best relay. In this paper, we derive the approximated outage probability and channel capacity for the Nth best OAF relay systems over INID Rayleigh fading channels. At first, the indirect link's received SNR is approximated as harmonic mean upper bound. With this information, we obtain the given relay's Nth best selection probability as the closed form. Finally, both outage probability and channel capacity are derived as the closed forms. Simulation results are finally presented to validate the analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, based on maximum signal‐to‐interference‐plus‐noise ratio criterion at the receiver, we propose a single transmission selection scheme for distributed antenna system and investigate the corresponding ergodic capacity together with outage probability in multicell environment. Assuming that the channels suffer from independent non‐identical Nakagami‐m fading with integer values of fading severity parameter m, we derive exact closed‐form expressions for the ergodic capacity and outage probability. Monte‐Carlo simulations are carried out to validate the theoretical analysis. Simulation results show that the ergodic capacity and outage probability of the proposed single transmission selection scheme outperform that of blanket transmission scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, performance of joint transmit and receive antenna selection in each hop of dual hop amplify‐and‐forward relay network is analyzed over flat and asymmetric Nakagami‐m fading channels. In the network, source, relay, and destination are equipped with multiple antennas. By considering relay location, we derive exact closed‐form cumulative distribution function, moment generating function, moments of end‐to‐end signal‐to‐noise ratio and closed form symbol error probability expressions for fixed and channel state information‐based relay gains. We also derive the asymptotical outage probability and symbol error probability expressions to obtain diversity order and array gain of the network. Analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Performance of cooperative relay schemes employing infrastructure based fixed relays having multiple antennas, has been investigated. Closed form expressions of outage probability, bit error rate and throughput for such system have been derived for Nakagami-m fading channels, with integer values of m. Here, relay and destination may perform either maximum ratio combining or selection combining of the signals. Comparative performance analysis of all four possible combinations has been analyzed for various relay locations, different number of antennas on the relay, various transmission rate and different fading conditions.  相似文献   

15.
This paper analyzes outage probability of bidirectional relaying (BDR) where two power-unconstrained single-antenna sources communicate with each other under assistance of a self-powered half-duplex single-antenna relay capable of energy harvesting and amplify-and-forward implementation. The relay harvests radio energy from both sources to power its relaying operation with the power splitting method. For outage analysis of the BDR for Nakagami-m fading, an exact formula is first proposed in closed-form. Through this formula, influences of important specifications (time switching ratio, power splitting ratio, energy conversion efficiency, fading severity, target transmission rate, transmit power of each source, distances from sources to relay) on the outage probability are then evaluated. Finally, Monte-Carlo simulations are generated to corroborate the proposed formula.  相似文献   

16.
In this paper, performance of an orthogonal frequency division multiplexing–based variable‐gain amplify and forward cooperative system using multiple relay with relay selection is analyzed over independent but not necessarily identically distributed frequency selective Nakagami‐m fading channels. For the analysis, nonlinear power amplifier is considered at the relay, and selection combining is adopted at destination node. Closed‐form expressions of the outage probability for various threshold signal‐to‐noise ratio (SNR) values and average symbol error rate for M‐ary quadrature amplitude modulation techniques are derived for the considered system. Further, the outage probability analysis is performed in high SNR regime to obtain the diversity order. Furthermore, impact of different fading parameters, multiple relay, and nonlinear power amplifier is highlighted on the outage probability and asymptotic outage probability for various threshold SNRs and on the average symbol error rate for various quadrature amplitude modulation constellations. The derived analytical expressions are generalized for various fading environments while considering the integer‐valued fading parameters. Finally, all the analytical results are verified through the Monte Carlo simulations for various SNR levels and system configurations.  相似文献   

17.
Recently, efficient partial relay selection (e‐PRS) was proposed as an enhanced version of PRS. In comparing e‐PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e‐PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e‐PRS in decode‐and‐forward (DF) relaying systems over non‐identical Nakagami‐m fading channels, where the fading parameter m is an integer. In particular, we provide closed‐form expressions of the exact outage probability and asymptotic outage probability for e‐PRS in DF relaying systems. Numerical results show that e‐PRS achieves similar outage performance to that of BRS for a low or medium signal‐to‐noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.  相似文献   

18.
In this paper, we investigate the outage performance of several antenna selection (AS) schemes in dual hop full-duplex (FD) multiple-input multiple-output (MIMO) relay networks in which the relay adopts decode-and-forward (DF) protocol over Nakagami-m fading channels. In the network, the source (S), destination (D) and relay (R) are assumed to be equipped with multiple antennas. We assume that the line-of-sight component between S and D cannot be established due to the poor fading environment conditions. For signal transmission-reception during the training period, only a single antenna at each node is selected according to selection techniques, and then with the help of an error-free feedback channel the selected antenna index is sent to the related node. Outage probability (OP) expressions related to AS schemes are obtained in closed forms and asymptotic OPs are also derived in order to get more meaningful insights into OP and diversity behaviour. The theoretical results are verified by Monte Carlo simulations. We show that performance of the FD relay can be significantly improved by using selection techniques compared to half-duplex (HD), especially at low signal-to-noise ratio (SNR) region. In addition, results show that the performance floor level meaning zero diversity at high SNR region, which is also confirmed by asymptotic analysis and is an inherent disadvantage of FD relay, can be decreased. Moreover, it is shown that the FD relay with AS schemes outperforms HD as the target rate increases for a certain value of SNR and residual self-interference power.  相似文献   

19.
The heterogeneous cooperative relaying technique can be utilized to complete the hierarchical convergence for the multi-radio access networks, where the single heterogeneous cooperative relay is selected and the maximal-ratio combining (MRC) scheme is utilized to achieve the cooperative diversity gain. In order to evaluate performances of the hierarchical convergence mechanism, this paper theoretically investigates the key factors of the multi-user diversity (MUD) gain, the heterogeneous cooperative diversity gain and the large scale fading of the first and second links. The tight closed-form expressions in terms of the outage probability and the average symbol error rate are derived for evaluating how and with what factors impact on the system performance. The analytical and simulation results show that the number of heterogeneous cooperative relay nodes (HCRNs)M and the number of destination stations (DSs)K have great impacts on performances, and the order of outage probability is (M + 1)K. The large scale fading ratio of the first hop to the second hop also has a big impact on performances. Thus in the real network, we can utilize advanced radio resource management schemes to achieve a high multi-user diversity, instead of configuring too many HCRNs for the heterogeneous cooperative diversity gain. Furthermore, we can guarantee the transmission quality between the BS and HCRNs via the network planning to optimize the overall network performance.  相似文献   

20.
This paper presents an analysis on the performance of single‐relay and multiple fixed‐relay cooperative network. The relay nodes operate in amplify‐and‐forward (AF) mode and transmit the signal through orthogonal channels. We consider maximal‐ratio combining at the destination to get the spatial diversity by adding the received signals coherently. The closed‐form moment‐generating function (MGF) for the total equivalent signal‐to‐noise ratio (SNR) is derived. The exact expressions of symbol‐error rate, outage capacity, and outage probability are obtained using the closed‐form MGF for single‐relay and multiple‐relay cooperative network with M‐ary phase shift keying (M‐PSK) and M‐ary quadrature amplitude modulation (M‐QAM) over independent and non‐identical Nakagami‐m channels and Rician fading channels. The approximated closed‐form expression of ergodic capacity is derived for both Nakagami‐m and Rician fading channels. The performance of the system is analyzed at various relay locations. The theoretical results are then compared with the simulation results obtained for binary PSK, quadrature PSK, and 16‐QAM modulation schemes to verify the analysis. Here, the expressions derived can be easily and more efficiently used to compute the performance parameters than doing Monte Carlo simulations. It is shown that cooperation is significant only for low K values for Rician by plotting cooperation gain versus K. The results show that the cooperative network performs best when the relay is located in the middle of source to destination link, at lower SNR values, and the performance of the system is worst if the relay is located closer to the source than to the destination. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号